AMD Expands Exascale Vision at IEEE HPC Symposium

By John Russell

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an Exascale Node Architecture (ENA) as the “primary building block for exascale machines” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case.

The new work, captured in an AMD authored paper (Design and Analysis of an APU for Exascale Computing), comes at a time when many technologies (and vendors) are competing for sway in the exascale race; it also follows an earlier AMD position paper (Achieving Exascale Capabilities through Heterogeneous Computing) that broadly championed the need for a heterogeneous computing approach to exascale. (See HPCwire coverage, AMD’s Exascale Strategy Hinges on Heterogeneity).

“The ENA consists of an Exascale Heterogeneous Processor (EHP) coupled with an advanced memory system. The EHP provides a high-performance accelerated processing unit (CPU+GPU), in-package high-bandwidth 3D memory, and aggressive use of die-stacking and chiplet technologies to meet the requirements for exascale computing in a balanced manner. We present initial experimental analysis to demonstrate the promise of our approach, and we discuss remaining open research challenges for the community,” write the authors.

To an extent, the document ticks through familiar challenges – the exascale race is hardly new – and touches on techniques that already have received attention. The authors also note unsolved issues remain. That said, AMD spells out in some detail its ideas for the solution architecture. Here are a few of specifics:

  • A high-performance accelerated processing unit (APU) that integrates high-throughput GPUs with excellent energy efficiency required for exascale levels of computation, tightly coupled with high-performance multi- core CPUs for serial or irregular code sections and legacy applications
  • Aggressive use of die-stacking capabilities that enable dense component integration to reduce data-movement overheads and enhance power efficiency
  • A chiplet-based approach that decouples performance-critical processing components (e.g., CPUs and GPUs) from components that do not scale well with technology (e.g., analog components), allowing fabrication in disparate, individually optimized process technologies for cost reduction and design reuse in other market segments
  • Multi-level memories that enhance memory bandwidth with in-package 3D memory, which is stacked directly above high-bandwidth-consuming GPUs, while provisioning high-capacity memory outside of the package
  • Advanced circuit techniques and active power-management techniques, which yield energy reductions with little performance impact
  • Hardware and software mechanisms to achieve high resilience and reliability with minimal impact on performance and energy efficiency
  • Concurrency frameworks that leverage the Heterogeneous System Architecture (HSA) and Radeon Open Compute platform (ROCm) software ecosystem to support new and existing applications with high- performance and high programmer productivity

The paper includes a fair amount of discussion around choices made. For example, “Rather than build a single, monolithic system on chip (SOC), we propose to leverage advanced die-stacking technologies to decompose the EHP into smaller components consisting of active interposers and chiplets. Each chiplet houses either multiple GPU compute units or CPU cores. The chiplet approach differs from conventional multi-chip module (MCM) designs in that each individual chiplet is not a complete SOC. For example, the CPU chiplet contains CPU cores and caches, but lacks memory interfaces and external I/O.”

Chiplet benefits, according to AMD, include die yield, process optimization, and re-usability. On the latter point, AMD reported, “The decomposition of the EHP into smaller pieces enables silicon-level reuse. A single, large HPC-optimized APU would be great for HPC markets, but may be less appropriate for others. For example, one or more of the CPU clusters could be packaged together to create a conventional CPU-only server processor.”

Six open-source scientific and security-related proxy applications (see table below) were studied to measure the maximum achievable floating-point throughput. AMD characterized application kernels into three categories:

  • Compute-intensive Kernels. Compute-intensive kernels have infrequent main-memory accesses, and the performance is bound by compute through- put. As such, these kernels benefit from higher CU counts and GPU frequencies, but they are relatively insensitive to memory bandwidth. In fact, in a power-constrained system like exascale supercomputers, provisioning higher bandwidth can be detrimental to the overall performance because that simply takes power away from the compute resources. “MaxFlops falls under this category, which is a highly compute-intensive kernel as shown in Fig. 4. (shown below) While the performance increases linearly with more CUs and frequency (i.e., each bandwidth curve increases with higher ops-per- byte), bandwidth does not help (i.e., the corresponding CU- frequency points across different bandwidth curves have roughly the same performance level).”
  • Balanced Kernels. Balanced kernels, such as CoMD shown in Fig. 5 (not shown), stress both the compute and memory resources. The best performance is observed when all resources are increased together. However, the rate of performance increase plateaus beyond a certain point. It is important to note that the plateau point is different across kernels.
  • Memory-intensive Kernels. Memory-intensive kernels, such as LULESH shown in Fig. 6 (not shown), issue a high rate of memory accesses, hence are sensitive to the memory bandwidth. A notable characteristic of this class of kernels is that more CUs and higher GPU frequency are beneficial only up to a certain point. After that, the excessive number of concurrent memory requests starts to thrash the caches and increases contention in the memory and interconnect network, resulting in performance degradation.

“We use a range of HPC applications that exercise various components of the architecture differently. Our analysis of over a thousand different hardware configurations found that utilizing a total of 320 CUs at 1 GHz with 3 TB/s of memory bandwidth achieves the best performance (when considering an average across all applications) under the ENA-node power budget of 160W and area constraints,” report the authors.

As an exercise, the AMD paper is worth reading as many of its ideas are likely to be absorbed into resulting exascale computing architectures.

Link to paper: http://www.computermachines.org/joe/publications/pdfs/hpca2017_exascale_apu.pdf

Authors (AMD Research):

Thiruvengadam Vijayaraghavan, Yasuko Eckert, Gabriel H. Loh, Michael J. Schulte, Mike Ignatowski, Bradford M. Beckmann, William C. Brantley, Joseph L. Greathouse, Wei Huang, Arun Karunanithi, Onur Kayiran, Mitesh Meswani, Indrani Paul, Matthew Poremba, Steven Raasch, Steven K. Reinhardt, Greg Sadowski, Vilas Sridharan.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This