AMD Expands Exascale Vision at IEEE HPC Symposium

By John Russell

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an Exascale Node Architecture (ENA) as the “primary building block for exascale machines” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case.

The new work, captured in an AMD authored paper (Design and Analysis of an APU for Exascale Computing), comes at a time when many technologies (and vendors) are competing for sway in the exascale race; it also follows an earlier AMD position paper (Achieving Exascale Capabilities through Heterogeneous Computing) that broadly championed the need for a heterogeneous computing approach to exascale. (See HPCwire coverage, AMD’s Exascale Strategy Hinges on Heterogeneity).

“The ENA consists of an Exascale Heterogeneous Processor (EHP) coupled with an advanced memory system. The EHP provides a high-performance accelerated processing unit (CPU+GPU), in-package high-bandwidth 3D memory, and aggressive use of die-stacking and chiplet technologies to meet the requirements for exascale computing in a balanced manner. We present initial experimental analysis to demonstrate the promise of our approach, and we discuss remaining open research challenges for the community,” write the authors.

To an extent, the document ticks through familiar challenges – the exascale race is hardly new – and touches on techniques that already have received attention. The authors also note unsolved issues remain. That said, AMD spells out in some detail its ideas for the solution architecture. Here are a few of specifics:

  • A high-performance accelerated processing unit (APU) that integrates high-throughput GPUs with excellent energy efficiency required for exascale levels of computation, tightly coupled with high-performance multi- core CPUs for serial or irregular code sections and legacy applications
  • Aggressive use of die-stacking capabilities that enable dense component integration to reduce data-movement overheads and enhance power efficiency
  • A chiplet-based approach that decouples performance-critical processing components (e.g., CPUs and GPUs) from components that do not scale well with technology (e.g., analog components), allowing fabrication in disparate, individually optimized process technologies for cost reduction and design reuse in other market segments
  • Multi-level memories that enhance memory bandwidth with in-package 3D memory, which is stacked directly above high-bandwidth-consuming GPUs, while provisioning high-capacity memory outside of the package
  • Advanced circuit techniques and active power-management techniques, which yield energy reductions with little performance impact
  • Hardware and software mechanisms to achieve high resilience and reliability with minimal impact on performance and energy efficiency
  • Concurrency frameworks that leverage the Heterogeneous System Architecture (HSA) and Radeon Open Compute platform (ROCm) software ecosystem to support new and existing applications with high- performance and high programmer productivity

The paper includes a fair amount of discussion around choices made. For example, “Rather than build a single, monolithic system on chip (SOC), we propose to leverage advanced die-stacking technologies to decompose the EHP into smaller components consisting of active interposers and chiplets. Each chiplet houses either multiple GPU compute units or CPU cores. The chiplet approach differs from conventional multi-chip module (MCM) designs in that each individual chiplet is not a complete SOC. For example, the CPU chiplet contains CPU cores and caches, but lacks memory interfaces and external I/O.”

Chiplet benefits, according to AMD, include die yield, process optimization, and re-usability. On the latter point, AMD reported, “The decomposition of the EHP into smaller pieces enables silicon-level reuse. A single, large HPC-optimized APU would be great for HPC markets, but may be less appropriate for others. For example, one or more of the CPU clusters could be packaged together to create a conventional CPU-only server processor.”

Six open-source scientific and security-related proxy applications (see table below) were studied to measure the maximum achievable floating-point throughput. AMD characterized application kernels into three categories:

  • Compute-intensive Kernels. Compute-intensive kernels have infrequent main-memory accesses, and the performance is bound by compute through- put. As such, these kernels benefit from higher CU counts and GPU frequencies, but they are relatively insensitive to memory bandwidth. In fact, in a power-constrained system like exascale supercomputers, provisioning higher bandwidth can be detrimental to the overall performance because that simply takes power away from the compute resources. “MaxFlops falls under this category, which is a highly compute-intensive kernel as shown in Fig. 4. (shown below) While the performance increases linearly with more CUs and frequency (i.e., each bandwidth curve increases with higher ops-per- byte), bandwidth does not help (i.e., the corresponding CU- frequency points across different bandwidth curves have roughly the same performance level).”
  • Balanced Kernels. Balanced kernels, such as CoMD shown in Fig. 5 (not shown), stress both the compute and memory resources. The best performance is observed when all resources are increased together. However, the rate of performance increase plateaus beyond a certain point. It is important to note that the plateau point is different across kernels.
  • Memory-intensive Kernels. Memory-intensive kernels, such as LULESH shown in Fig. 6 (not shown), issue a high rate of memory accesses, hence are sensitive to the memory bandwidth. A notable characteristic of this class of kernels is that more CUs and higher GPU frequency are beneficial only up to a certain point. After that, the excessive number of concurrent memory requests starts to thrash the caches and increases contention in the memory and interconnect network, resulting in performance degradation.

“We use a range of HPC applications that exercise various components of the architecture differently. Our analysis of over a thousand different hardware configurations found that utilizing a total of 320 CUs at 1 GHz with 3 TB/s of memory bandwidth achieves the best performance (when considering an average across all applications) under the ENA-node power budget of 160W and area constraints,” report the authors.

As an exercise, the AMD paper is worth reading as many of its ideas are likely to be absorbed into resulting exascale computing architectures.

Link to paper: http://www.computermachines.org/joe/publications/pdfs/hpca2017_exascale_apu.pdf

Authors (AMD Research):

Thiruvengadam Vijayaraghavan, Yasuko Eckert, Gabriel H. Loh, Michael J. Schulte, Mike Ignatowski, Bradford M. Beckmann, William C. Brantley, Joseph L. Greathouse, Wei Huang, Arun Karunanithi, Onur Kayiran, Mitesh Meswani, Indrani Paul, Matthew Poremba, Steven Raasch, Steven K. Reinhardt, Greg Sadowski, Vilas Sridharan.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near- Read more…

By John Russell

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This