AMD Expands Exascale Vision at IEEE HPC Symposium

By John Russell

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an Exascale Node Architecture (ENA) as the “primary building block for exascale machines” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case.

The new work, captured in an AMD authored paper (Design and Analysis of an APU for Exascale Computing), comes at a time when many technologies (and vendors) are competing for sway in the exascale race; it also follows an earlier AMD position paper (Achieving Exascale Capabilities through Heterogeneous Computing) that broadly championed the need for a heterogeneous computing approach to exascale. (See HPCwire coverage, AMD’s Exascale Strategy Hinges on Heterogeneity).

“The ENA consists of an Exascale Heterogeneous Processor (EHP) coupled with an advanced memory system. The EHP provides a high-performance accelerated processing unit (CPU+GPU), in-package high-bandwidth 3D memory, and aggressive use of die-stacking and chiplet technologies to meet the requirements for exascale computing in a balanced manner. We present initial experimental analysis to demonstrate the promise of our approach, and we discuss remaining open research challenges for the community,” write the authors.

To an extent, the document ticks through familiar challenges – the exascale race is hardly new – and touches on techniques that already have received attention. The authors also note unsolved issues remain. That said, AMD spells out in some detail its ideas for the solution architecture. Here are a few of specifics:

  • A high-performance accelerated processing unit (APU) that integrates high-throughput GPUs with excellent energy efficiency required for exascale levels of computation, tightly coupled with high-performance multi- core CPUs for serial or irregular code sections and legacy applications
  • Aggressive use of die-stacking capabilities that enable dense component integration to reduce data-movement overheads and enhance power efficiency
  • A chiplet-based approach that decouples performance-critical processing components (e.g., CPUs and GPUs) from components that do not scale well with technology (e.g., analog components), allowing fabrication in disparate, individually optimized process technologies for cost reduction and design reuse in other market segments
  • Multi-level memories that enhance memory bandwidth with in-package 3D memory, which is stacked directly above high-bandwidth-consuming GPUs, while provisioning high-capacity memory outside of the package
  • Advanced circuit techniques and active power-management techniques, which yield energy reductions with little performance impact
  • Hardware and software mechanisms to achieve high resilience and reliability with minimal impact on performance and energy efficiency
  • Concurrency frameworks that leverage the Heterogeneous System Architecture (HSA) and Radeon Open Compute platform (ROCm) software ecosystem to support new and existing applications with high- performance and high programmer productivity

The paper includes a fair amount of discussion around choices made. For example, “Rather than build a single, monolithic system on chip (SOC), we propose to leverage advanced die-stacking technologies to decompose the EHP into smaller components consisting of active interposers and chiplets. Each chiplet houses either multiple GPU compute units or CPU cores. The chiplet approach differs from conventional multi-chip module (MCM) designs in that each individual chiplet is not a complete SOC. For example, the CPU chiplet contains CPU cores and caches, but lacks memory interfaces and external I/O.”

Chiplet benefits, according to AMD, include die yield, process optimization, and re-usability. On the latter point, AMD reported, “The decomposition of the EHP into smaller pieces enables silicon-level reuse. A single, large HPC-optimized APU would be great for HPC markets, but may be less appropriate for others. For example, one or more of the CPU clusters could be packaged together to create a conventional CPU-only server processor.”

Six open-source scientific and security-related proxy applications (see table below) were studied to measure the maximum achievable floating-point throughput. AMD characterized application kernels into three categories:

  • Compute-intensive Kernels. Compute-intensive kernels have infrequent main-memory accesses, and the performance is bound by compute through- put. As such, these kernels benefit from higher CU counts and GPU frequencies, but they are relatively insensitive to memory bandwidth. In fact, in a power-constrained system like exascale supercomputers, provisioning higher bandwidth can be detrimental to the overall performance because that simply takes power away from the compute resources. “MaxFlops falls under this category, which is a highly compute-intensive kernel as shown in Fig. 4. (shown below) While the performance increases linearly with more CUs and frequency (i.e., each bandwidth curve increases with higher ops-per- byte), bandwidth does not help (i.e., the corresponding CU- frequency points across different bandwidth curves have roughly the same performance level).”
  • Balanced Kernels. Balanced kernels, such as CoMD shown in Fig. 5 (not shown), stress both the compute and memory resources. The best performance is observed when all resources are increased together. However, the rate of performance increase plateaus beyond a certain point. It is important to note that the plateau point is different across kernels.
  • Memory-intensive Kernels. Memory-intensive kernels, such as LULESH shown in Fig. 6 (not shown), issue a high rate of memory accesses, hence are sensitive to the memory bandwidth. A notable characteristic of this class of kernels is that more CUs and higher GPU frequency are beneficial only up to a certain point. After that, the excessive number of concurrent memory requests starts to thrash the caches and increases contention in the memory and interconnect network, resulting in performance degradation.

“We use a range of HPC applications that exercise various components of the architecture differently. Our analysis of over a thousand different hardware configurations found that utilizing a total of 320 CUs at 1 GHz with 3 TB/s of memory bandwidth achieves the best performance (when considering an average across all applications) under the ENA-node power budget of 160W and area constraints,” report the authors.

As an exercise, the AMD paper is worth reading as many of its ideas are likely to be absorbed into resulting exascale computing architectures.

Link to paper: http://www.computermachines.org/joe/publications/pdfs/hpca2017_exascale_apu.pdf

Authors (AMD Research):

Thiruvengadam Vijayaraghavan, Yasuko Eckert, Gabriel H. Loh, Michael J. Schulte, Mike Ignatowski, Bradford M. Beckmann, William C. Brantley, Joseph L. Greathouse, Wei Huang, Arun Karunanithi, Onur Kayiran, Mitesh Meswani, Indrani Paul, Matthew Poremba, Steven Raasch, Steven K. Reinhardt, Greg Sadowski, Vilas Sridharan.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This