HPC4Mfg Advances State-of-the-Art for American Manufacturing

By Tiffany Trader

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing.

Keynote speaker Thomas Lange, 36-year veteran of Procter & Gamble (P&G), the manufacturing company well-known in HPC circles for their Pringles success story, engaged the room with a dynamic recounting of the history of manufacturing in the United States. Lange, an industry consultant since leaving P&G in 2015, emphasized the importance of infrastructure and logistics to the rise of American manufacturing. Throughout the last two centuries, he noted, manufacturing success was tied first to waterways (P&G), then to railroads (Sears), to the interstate-highway network (Walmart), and moving into the present day, the Internet (Amazon).

Tom Lange

“Manufacturers have to innovate how we do our thing or we will diminish,” said Lange. “It’s that simple. It’s not just about regulations and cheap labor off-shore; it’s about innovating how we do what we do, not just what we make. And it turns out innovating manufacturing at scale is too expensive to just try it and see what happens. That is the issue; it’s too big; it’s too expensive to mess with.”

The HPC4Mfg program was launched by the Department of Energy in 2015 to directly facilitate this innovation by infusing advanced computing expertise and technology into the US manufacturing industry, where it “shortens development time, guides designs, optimizes processes, prequalifies parts, reduces testing, reduces energy intensity, minimizes green house gas emissions, and ultimately improves economic competitiveness,” according to HPC4Mfg program management. Advancing innovative clean energy technologies and reducing energy and resource consumption are core elements of the program.

Lori Diachin, HPC4Mfg Director

“The HPC4Mfg program has really been designed for high-performance computing and [demonstrating] the benefits to industry,” said HPC4Mfg Director Lori Diachin. “You see a lot of ways that it’s impacting industry in the projects we have now, and these impacts range from accelerating innovation, facilitating new product design, and upscaling technologies that have been demonstrated in the laboratory or at a small scale.”

HPC4Mfg began with five seedling projects and has since implemented three solicitation rounds. (Awardees for the third round are due to be announced very shortly). It is now executing a $8.5-9 million portfolio at Lawrence Livermore, Lawrence Berkeley, and Oak Ridge National Laboratories (the managing partner laboratories for the program). The program is in the process of expanding across the DOE national lab space to include access to computers and expertise at other participating laboratories.

Currently, there are 27 demonstration projects (either in-progress, getting started or going through the CRADA process) and one, larger capability project with Purdue Calumet and US Steel (to develop the “The Virtual Blast Furnace”). The projects get access to the top supercomputers in the country: Titan at Oak Ridge, Cori at Berkeley, Vulcan at Livermore, Peregrine at NREL, and soon Mira at Argonne National Lab.

HPC4Mfg is sponsored by the DOE’s Advanced Manufacturing Office (AMO), which is part of the Office of Energy Efficiency and Renewable Energy. The AMO’s mission is to “partner with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.”

HPC4Mfg proposal submissions by industrial sector (Source: HPC4Mfg)

High-impact manufacturing areas, such as the aerospace industry, automotive, machinery, chemical processing, and the steel industry, are all represented in the participant pool.

“We aim to lower the barriers, lower the amount of risk that industrial companies have in experimenting with high performance computing in the context of their applications,” said Diachin of the program’s vision and goals. “From our perspective, the status of the industry is that some large companies have a lot of access to HPC. They’re very sophisticated in how they use it. On the flip side, very few small-to-medium-sized companies really have the in-house expertise or the access to compute resources that they need to even try out high performance computing in the context of their problems.

“On the DOE side, we do have a lot of expertise and we have very large-scale computers and so we’re able to bring to bear some of those technologies in a large array of different problems, but I think it’s a challenge – and I’ve heard this many times – for industry to understand how do they get access to the expertise that’s in the DOE labs. What is that expertise? Where does it live? They can’t really track everything that’s going on in all the national labs that the DOE has. And so this program is really designed to help reduce those barriers and create that marriage between industry-interesting challenges and problems and HPC resources at the laboratory.”

In terms of disciplines, computational fluid dynamics is a very widely needed expertise, also materials modeling and thermomechanical type modeling, but there are a wide variety, according to Diachin.

From Concept to Project: Airplanes, Lightbulbs, and Paper Towels

After submitting a concept paper, followed by a full proposal, successful projects receive about $300,000 from the AMO to fund the laboratory participation in the project. The industrial partners are required to provide at least a 20 percent match to the AMO funding. This is usually in the form of “in kind time and effort” but industrial partners can also provide a cash contribution.

Diachin emphasized that concept papers need not identify a particular lab or PI as collaborator, explaining, “You just need to tell us what your problem is and describe it in a way that we understand what simulation capabilities are needed and what’s the impact that you envision being able to achieve if you’re successful in this demonstration project.  The technical merit review team will evaluate each concepts paper for relevance as a high performance computing challenge, appropriateness for partnership with the national laboratories, and its ability to have national scale impact and be successful.  And if you haven’t identified a principal investigator at the national lab, we’ll identify the right place and team from the DOE lab complex to get this work done; this matching process is really a unique feature of the program.“

For a given round, the program typically receives about 40 concept papers from which the program office selects about 20 to go forward to full proposal state. From that they select around 10 to be fully-funded. The proposals are evaluated on how well they advance the state-of-the-art for the manufacturing sector, the technical feasibility of the project, the impact to energy savings and or clean energy production, relevance to HPC, and the strength and balance of the team.

“We are really looking for a strong partnership between the DOE lab and the company,” Diachin told HPCwire. “We’re looking for evidence that there were in-depth discussions as part of the proposal writing process and that there’s a good match in terms of the team.”

Building community and workforce is another important goal here, and the AMO funds about 10 student internships to work on the HPC4Mfg program each year.

In her talk, Diachin highlighted several projects. The LIFT consortium in collaboration with the University of Michigan and Livermore is working to predict the strength of lightweight aluminum lithium alloys produced under different process conditions. Implemented in aircraft designs, the new alloys could save millions of dollars in fuel costs.

SORAA/LLNL: GaN crystal growth

The SORAA/Livermore team is working to develop more efficient LED lightbulbs by modeling ammono-thermal crystal growth of gallium nitride to scale up the process. The goal is to reduce production costs of LED lighting by 20 percent. Project partners say the new high-fidelity model will save years of trial-and-error experimentation typically needed to facilitate large-scale commercial production.

Energy savings in paper-making is the focus of the Agenda2020 Technology Alliance (a paper industry consortium) in collaboration with Livermore and Berkeley. The goal of this project is to use multi-physics models to reduce paper rewetting in the pressing process. The simulations will be used to optimize drying reducing energy consumption by up to 20 percent (saving 80 trillion BTUs and $250 million each year).

In another paper-related project, P&G and their lab partner Livermore are using HPC to evaluate different microfiber configurations “to optimize the drying time while maintaining user experience.” The project resulted in the development of a new mesh tool, called pFiber, that reduces the product design cycle by a factor of two for smaller numbers of fibers and processing cores, and by a factor of eight for higher fiber counts using a larger number of cores.

This P&G project also illustrates the return on investment for the laboratories. The example represents the largest non-benchmark run done with the Paradyn code at Livermore. “These are very challenging problems that the industry is putting forward that are stretching the capabilities and making our capabilities at the national labs more robust,” said Diachin.

One area that is receiving a lot of attention is additive manufacturing, which is broadly used among multiple industry sectors and thus fits with the role of HPC4Mfg to foster high-impact innovation. “It’s a very hot topic for modeling and simulation, both to better understand the processes and the properties of the resultant parts,” said Diachin.

A collaboration involving United Technologies Research Center (UTRC), Livermore and Oak Ridge is one of the projects studying this industrial process. Their focus is on dendrite growth in additive manufacturing parts. UTRC is one of those companies that has a lot of sophisticated modeling and simulation experience, Diachin explained. “They came to the table with some models that they had in hand that they could run in two dimensions, but they weren’t able to take into three dimensions, so the collaboration is taking the models that they have and looking at implementing them directly in a code at Livermore called AMP and running that to much larger scale. At the same time, at Oak Ridge, there are alternate models that can be used to model these processes, so they are developing these alternate models and then they will compare and contrast these different models to understand the process better. So it’s a very interesting approach.”

Once the projects create these large-scale models in partnership with the labs, there can be a need to then down-scale the applications to employ them in industrial settings. This is where reduced order modeling comes in. “This can be a very nice use of the resources and expertise at the labs,” Diachin told HPCwire. “The way reduced order models often work is you run very large-scale, fine-resolution, detailed simulations of a particular phenomenon and from that you can extract basis vectors from a number of different parameter runs. You can then use those basis vectors to create a much smaller representation of the problem – often two to three orders of magnitude smaller. Problems that required high-performance computing can then be run on a small cluster or even a desktop and you can do more real-time analysis within the context of the parameter space you studied with the large-scale run. That’s a very powerful tool for process optimization or the process decisions you have to make in an operating environment. “

HPC4Mfg focuses on manufacturing right now, but the concept is designed to be scalable. “We get a lot of concept papers that are very appropriate for other offices potentially within the Department of Energy and we have been informally socializing them. With the next solicitation we’re going to make that more formal. Jeff Roberts from Livermore National Lab has been working with Mark Johnson at the AMO and others to really expand the program into a lot of different areas,” said Diachin.

The program runs two solicitations per year, in the fall and in the spring. The next funding round will be announced in mid to late March with concept papers due the following month. After the announcement, the HPC4Mfg program management team will be conducting webinars to explain the goals of the program, the submission process and answer any questions.

Announced Projects:

Spring 2016 Solicitation Selectees

Fall 2015 Solicitation Selectees

Seedlings

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This