HPC4Mfg Advances State-of-the-Art for American Manufacturing

By Tiffany Trader

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing.

Keynote speaker Thomas Lange, 36-year veteran of Procter & Gamble (P&G), the manufacturing company well-known in HPC circles for their Pringles success story, engaged the room with a dynamic recounting of the history of manufacturing in the United States. Lange, an industry consultant since leaving P&G in 2015, emphasized the importance of infrastructure and logistics to the rise of American manufacturing. Throughout the last two centuries, he noted, manufacturing success was tied first to waterways (P&G), then to railroads (Sears), to the interstate-highway network (Walmart), and moving into the present day, the Internet (Amazon).

Tom Lange

“Manufacturers have to innovate how we do our thing or we will diminish,” said Lange. “It’s that simple. It’s not just about regulations and cheap labor off-shore; it’s about innovating how we do what we do, not just what we make. And it turns out innovating manufacturing at scale is too expensive to just try it and see what happens. That is the issue; it’s too big; it’s too expensive to mess with.”

The HPC4Mfg program was launched by the Department of Energy in 2015 to directly facilitate this innovation by infusing advanced computing expertise and technology into the US manufacturing industry, where it “shortens development time, guides designs, optimizes processes, prequalifies parts, reduces testing, reduces energy intensity, minimizes green house gas emissions, and ultimately improves economic competitiveness,” according to HPC4Mfg program management. Advancing innovative clean energy technologies and reducing energy and resource consumption are core elements of the program.

Lori Diachin, HPC4Mfg Director

“The HPC4Mfg program has really been designed for high-performance computing and [demonstrating] the benefits to industry,” said HPC4Mfg Director Lori Diachin. “You see a lot of ways that it’s impacting industry in the projects we have now, and these impacts range from accelerating innovation, facilitating new product design, and upscaling technologies that have been demonstrated in the laboratory or at a small scale.”

HPC4Mfg began with five seedling projects and has since implemented three solicitation rounds. (Awardees for the third round are due to be announced very shortly). It is now executing a $8.5-9 million portfolio at Lawrence Livermore, Lawrence Berkeley, and Oak Ridge National Laboratories (the managing partner laboratories for the program). The program is in the process of expanding across the DOE national lab space to include access to computers and expertise at other participating laboratories.

Currently, there are 27 demonstration projects (either in-progress, getting started or going through the CRADA process) and one, larger capability project with Purdue Calumet and US Steel (to develop the “The Virtual Blast Furnace”). The projects get access to the top supercomputers in the country: Titan at Oak Ridge, Cori at Berkeley, Vulcan at Livermore, Peregrine at NREL, and soon Mira at Argonne National Lab.

HPC4Mfg is sponsored by the DOE’s Advanced Manufacturing Office (AMO), which is part of the Office of Energy Efficiency and Renewable Energy. The AMO’s mission is to “partner with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.”

HPC4Mfg proposal submissions by industrial sector (Source: HPC4Mfg)

High-impact manufacturing areas, such as the aerospace industry, automotive, machinery, chemical processing, and the steel industry, are all represented in the participant pool.

“We aim to lower the barriers, lower the amount of risk that industrial companies have in experimenting with high performance computing in the context of their applications,” said Diachin of the program’s vision and goals. “From our perspective, the status of the industry is that some large companies have a lot of access to HPC. They’re very sophisticated in how they use it. On the flip side, very few small-to-medium-sized companies really have the in-house expertise or the access to compute resources that they need to even try out high performance computing in the context of their problems.

“On the DOE side, we do have a lot of expertise and we have very large-scale computers and so we’re able to bring to bear some of those technologies in a large array of different problems, but I think it’s a challenge – and I’ve heard this many times – for industry to understand how do they get access to the expertise that’s in the DOE labs. What is that expertise? Where does it live? They can’t really track everything that’s going on in all the national labs that the DOE has. And so this program is really designed to help reduce those barriers and create that marriage between industry-interesting challenges and problems and HPC resources at the laboratory.”

In terms of disciplines, computational fluid dynamics is a very widely needed expertise, also materials modeling and thermomechanical type modeling, but there are a wide variety, according to Diachin.

From Concept to Project: Airplanes, Lightbulbs, and Paper Towels

After submitting a concept paper, followed by a full proposal, successful projects receive about $300,000 from the AMO to fund the laboratory participation in the project. The industrial partners are required to provide at least a 20 percent match to the AMO funding. This is usually in the form of “in kind time and effort” but industrial partners can also provide a cash contribution.

Diachin emphasized that concept papers need not identify a particular lab or PI as collaborator, explaining, “You just need to tell us what your problem is and describe it in a way that we understand what simulation capabilities are needed and what’s the impact that you envision being able to achieve if you’re successful in this demonstration project.  The technical merit review team will evaluate each concepts paper for relevance as a high performance computing challenge, appropriateness for partnership with the national laboratories, and its ability to have national scale impact and be successful.  And if you haven’t identified a principal investigator at the national lab, we’ll identify the right place and team from the DOE lab complex to get this work done; this matching process is really a unique feature of the program.“

For a given round, the program typically receives about 40 concept papers from which the program office selects about 20 to go forward to full proposal state. From that they select around 10 to be fully-funded. The proposals are evaluated on how well they advance the state-of-the-art for the manufacturing sector, the technical feasibility of the project, the impact to energy savings and or clean energy production, relevance to HPC, and the strength and balance of the team.

“We are really looking for a strong partnership between the DOE lab and the company,” Diachin told HPCwire. “We’re looking for evidence that there were in-depth discussions as part of the proposal writing process and that there’s a good match in terms of the team.”

Building community and workforce is another important goal here, and the AMO funds about 10 student internships to work on the HPC4Mfg program each year.

In her talk, Diachin highlighted several projects. The LIFT consortium in collaboration with the University of Michigan and Livermore is working to predict the strength of lightweight aluminum lithium alloys produced under different process conditions. Implemented in aircraft designs, the new alloys could save millions of dollars in fuel costs.

SORAA/LLNL: GaN crystal growth

The SORAA/Livermore team is working to develop more efficient LED lightbulbs by modeling ammono-thermal crystal growth of gallium nitride to scale up the process. The goal is to reduce production costs of LED lighting by 20 percent. Project partners say the new high-fidelity model will save years of trial-and-error experimentation typically needed to facilitate large-scale commercial production.

Energy savings in paper-making is the focus of the Agenda2020 Technology Alliance (a paper industry consortium) in collaboration with Livermore and Berkeley. The goal of this project is to use multi-physics models to reduce paper rewetting in the pressing process. The simulations will be used to optimize drying reducing energy consumption by up to 20 percent (saving 80 trillion BTUs and $250 million each year).

In another paper-related project, P&G and their lab partner Livermore are using HPC to evaluate different microfiber configurations “to optimize the drying time while maintaining user experience.” The project resulted in the development of a new mesh tool, called pFiber, that reduces the product design cycle by a factor of two for smaller numbers of fibers and processing cores, and by a factor of eight for higher fiber counts using a larger number of cores.

This P&G project also illustrates the return on investment for the laboratories. The example represents the largest non-benchmark run done with the Paradyn code at Livermore. “These are very challenging problems that the industry is putting forward that are stretching the capabilities and making our capabilities at the national labs more robust,” said Diachin.

One area that is receiving a lot of attention is additive manufacturing, which is broadly used among multiple industry sectors and thus fits with the role of HPC4Mfg to foster high-impact innovation. “It’s a very hot topic for modeling and simulation, both to better understand the processes and the properties of the resultant parts,” said Diachin.

A collaboration involving United Technologies Research Center (UTRC), Livermore and Oak Ridge is one of the projects studying this industrial process. Their focus is on dendrite growth in additive manufacturing parts. UTRC is one of those companies that has a lot of sophisticated modeling and simulation experience, Diachin explained. “They came to the table with some models that they had in hand that they could run in two dimensions, but they weren’t able to take into three dimensions, so the collaboration is taking the models that they have and looking at implementing them directly in a code at Livermore called AMP and running that to much larger scale. At the same time, at Oak Ridge, there are alternate models that can be used to model these processes, so they are developing these alternate models and then they will compare and contrast these different models to understand the process better. So it’s a very interesting approach.”

Once the projects create these large-scale models in partnership with the labs, there can be a need to then down-scale the applications to employ them in industrial settings. This is where reduced order modeling comes in. “This can be a very nice use of the resources and expertise at the labs,” Diachin told HPCwire. “The way reduced order models often work is you run very large-scale, fine-resolution, detailed simulations of a particular phenomenon and from that you can extract basis vectors from a number of different parameter runs. You can then use those basis vectors to create a much smaller representation of the problem – often two to three orders of magnitude smaller. Problems that required high-performance computing can then be run on a small cluster or even a desktop and you can do more real-time analysis within the context of the parameter space you studied with the large-scale run. That’s a very powerful tool for process optimization or the process decisions you have to make in an operating environment. “

HPC4Mfg focuses on manufacturing right now, but the concept is designed to be scalable. “We get a lot of concept papers that are very appropriate for other offices potentially within the Department of Energy and we have been informally socializing them. With the next solicitation we’re going to make that more formal. Jeff Roberts from Livermore National Lab has been working with Mark Johnson at the AMO and others to really expand the program into a lot of different areas,” said Diachin.

The program runs two solicitations per year, in the fall and in the spring. The next funding round will be announced in mid to late March with concept papers due the following month. After the announcement, the HPC4Mfg program management team will be conducting webinars to explain the goals of the program, the submission process and answer any questions.

Announced Projects:

Spring 2016 Solicitation Selectees

Fall 2015 Solicitation Selectees

Seedlings

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Global QC Market Projected to Grow to More Than $800 million by 2024

September 28, 2020

The Quantum Economic Development Consortium (QED-C) and Hyperion Research are projecting that the global quantum computing (QC) market - worth an estimated $320 million in 2020 - will grow at an anticipated 27% CAGR betw Read more…

By Staff Reports

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Committee last week accepted a subcommittee report calling for a t Read more…

By John Russell

Supercomputer Research Aims to Supercharge COVID-19 Antiviral Remdesivir

September 25, 2020

Remdesivir is one of a handful of therapeutic antiviral drugs that have been proven to improve outcomes for COVID-19 patients, and as such, is a crucial weapon in the fight against the pandemic – especially in the abse Read more…

By Oliver Peckham

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

AI Silicon Startup Graphcore Launches Channel Partner Program

September 23, 2020

AI compute platform vendor Graphcore has launched its first formal global channel partner program to promote and boost the sales of its AI processors and blade computing products. The formalized, all-new Graphcore Elite Partner Program follows the company’s past history of working with several... Read more…

By Todd R. Weiss

AWS Solution Channel

The Water Institute of the Gulf runs compute-heavy storm surge and wave simulations on AWS

The Water Institute of the Gulf (Water Institute) runs its storm surge and wave analysis models on Amazon Web Services (AWS)—a task that sometimes requires large bursts of compute power. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Commit Read more…

By John Russell

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This