Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

By John Russell

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Midweek at the Open Compute Project (OCP) Summit in Santa Clara, Calif., the GPU technology leader unveiled blueprints for a new open source Tesla P100-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olympus. (We’ll make an educated guess that the D in DGX-1 stands for Deep Learning and the H in HGX-1 for Hyperscale.) At roughly the same time, Facebook introduced Big Basin, the successor to its Big Sur GPU server, which also uses Nvidia P100s (in a similar 8-way configuration, which we’ll get into in a moment). And in the embedded world, Nvidia announced the Jetson TX2, billed as a “drop-in supercomputer,” with an ARM-based CPU supporting Pascal graphics.

That’s a productive week by any standard and there are multiple threads to follow here. Most of the activity was driven by artificial intelligence/deep learning’s continued drive into upper-end HPC and the cloud. Nvidia has been striving to leverage its GPU strength in both traditional scientific computing as well as in AI/DL whose applications often require lower precision (32-, 16-, and even 8-bit) computation.

HGX-1, the Project Olympus hyperscale GPU accelerator chassis for AI

Roy Kim, director Tesla Product Management, described the adoption of AI/DL as a revolution gathering speed fast. “The deep learning and AI revolution, even though it is huge, is also fairly young. A few years ago people were still asking the question, what is deep learning. Now every cloud vendor is asking how it can be AI-ready,” said Kim. A standardized HGX-1 design will make that possible, he contends.

The emergence of open source hardware for the cloud via OCP and Olympus is reminiscent of the emergence of the ATX ‘standard’ for PCs. The HGX-1 will be used as part of a standard AI/DL reference platform and enable cloud providers to rapidly develop AI/DL offerings, according to Kim.

Here’s a brief summary of Nvidia’s busy news week:

  • HGX-1. Think DGX-1, without the CPUs. It’s an accelerator box with eight Tesla P100s, connected in the same hypercube mesh as the DGX-1 and also leveraging the NVLink interconnect. The HGX-1 hooks to servers via PCIe interface. Developed under the Olympus program guidelines, the design is open source such that users could easily take the files to their preferred ODM for manufacture. It will be interesting to see how cloud providers respond and whether significant tweaking takes place to optimize the HGX design for particular AI/Dl workloads.
  • Big Basin. Facebook says Big Basin trains models that are 30 percent larger because of enhanced throughput and an increase in memory from 12 GB to 16 GB. “In tests with popular image classification models like ResNet-50, we were able to reach almost 100 percent improvement in throughput compared with Big Sur,” according to Arlene Gabriana Murillo’s FB blog. Designed as a JBOG (just a bunch of GPUs) to allow for the complete disaggregation of the CPU compute from the GPUs, it does not have compute and networking built in, so it requires an external server head node. “By designing [Big Basin] this way, we can connect our Open Compute servers as a separate building block from the Big Basin unit and scale each block independently as new CPUs and GPUs are released,” says FB in a blog Built in collaboration with ODM Quanta Cloud Technology, the Big Basin system also features Tesla P100 GPU accelerators.
  • RIKEN’s new DGX-1 supercomputer (Image courtesy of Fujitsu Ltd.)

    Fujitsu AI Supercomputer. The new RIKEN machine will include 24 DGX-1 systems as well as 32 Fujitsu PRIMERGY servers and is expected to reach 4 petaflops peak performance when running half-precision floating point calculations. The new supercomputer is scheduled to go online next month and will be used to accelerate AI research in medicine, manufacturing, healthcare and disaster preparedness.

  • Jetson TX2. A replacement for the Jetson TX1, the embedded module (SoC) features Pascal graphics with 256 CUDA cores while its CPU is an HMP (Heterogeneous Multi-Processor Architecture) Dual Denver plus a quad ARM Cortex-A57. Nvidia, like others, seems to be doing more with ARM, which though strong in the embedded and mobile space has struggled to penetrate the datacenter. That may be changing. Microsoft announced an ARM initiative on cloud workflows this week. “We have been running evaluations side by side with our production workloads and what we see is quite compelling. The high Instruction Per Cycle (IPC) counts, high core and thread counts, the connectivity options and the integration that we see across the ARM ecosystem is very exciting and continue to improve,” wrote Leendert van Doorn of Microsoft in a blog.

The FB Big Basin and Microsoft embrace of HGX-1 suggest some of different ways in which Nvidia GPU technology may be deployed by cloud vendors. The Microsoft HGX-1, built by Ingrasys (a Foxconn subsidiary), is flexible in the sense that the HGX-1 is deliberately designed to accommodate differing AI/DL workloads.

“[For Facebook], it’s really about their particular workloads. They talk about natural language processing, image processing, and all of this is really core to the services they provide their users. So they built a system that is best suited for their workload. The topology is very similar to the HGX-1 in that it has the same hypercube mesh and has eight Tesla P100s in the box with NVLink. The only difference is that it has been optimized and tuned for deep learning training, which means it has been hardened for DL training as opposed to HGX-1 which is highly configurable,” said Kim.

Interesting, when Microsoft describes the Olympus philosophy it says: “Project Olympus applies a model of open source collaboration that has been embraced for software but has historically been at odds with the physical demands of developing hardware. We’re taking a very different approach by contributing our next generation cloud hardware designs when they are approx. 50% complete – much earlier in the cycle than any previous OCP project. By sharing designs that are actively in development, Project Olympus will allow the community to contribute to the ecosystem by downloading, modifying, and forking the hardware design just like open source software,” wrote Kushagra Vaid, GM, Azure Hardware Infrastructure in a fall 2016 blog.

The HGX-1 is a complete design, said Kim but that doesn’t preclude optimization. “The design itself is complete and so you can go to Foxconn and give them this design and file and say can you manufacture this for us. It’s been tested and it works. Certainly because it is open source I can imagine other cloud vendors going in and saying I could tweak this to be more efficient specifically for the target market that I am going after and that one of the benefits. I wouldn’t be surprised if that happens. I think it gives each cloud provider an ability to optimize the system for their particular workload.”

Will there be an HGX-2? “That’s a good question. The idea is that the standards do evolve to meet the needs of the evolving workloads. We are going to continue to work with our cloud vendors to provide the best answers for that. Without giving you any roadmap, we do expect it to evolve,” said Kim.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This