Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

By John Russell

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Midweek at the Open Compute Project (OCP) Summit in Santa Clara, Calif., the GPU technology leader unveiled blueprints for a new open source Tesla P100-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olympus. (We’ll make an educated guess that the D in DGX-1 stands for Deep Learning and the H in HGX-1 for Hyperscale.) At roughly the same time, Facebook introduced Big Basin, the successor to its Big Sur GPU server, which also uses Nvidia P100s (in a similar 8-way configuration, which we’ll get into in a moment). And in the embedded world, Nvidia announced the Jetson TX2, billed as a “drop-in supercomputer,” with an ARM-based CPU supporting Pascal graphics.

That’s a productive week by any standard and there are multiple threads to follow here. Most of the activity was driven by artificial intelligence/deep learning’s continued drive into upper-end HPC and the cloud. Nvidia has been striving to leverage its GPU strength in both traditional scientific computing as well as in AI/DL whose applications often require lower precision (32-, 16-, and even 8-bit) computation.

HGX-1, the Project Olympus hyperscale GPU accelerator chassis for AI

Roy Kim, director Tesla Product Management, described the adoption of AI/DL as a revolution gathering speed fast. “The deep learning and AI revolution, even though it is huge, is also fairly young. A few years ago people were still asking the question, what is deep learning. Now every cloud vendor is asking how it can be AI-ready,” said Kim. A standardized HGX-1 design will make that possible, he contends.

The emergence of open source hardware for the cloud via OCP and Olympus is reminiscent of the emergence of the ATX ‘standard’ for PCs. The HGX-1 will be used as part of a standard AI/DL reference platform and enable cloud providers to rapidly develop AI/DL offerings, according to Kim.

Here’s a brief summary of Nvidia’s busy news week:

  • HGX-1. Think DGX-1, without the CPUs. It’s an accelerator box with eight Tesla P100s, connected in the same hypercube mesh as the DGX-1 and also leveraging the NVLink interconnect. The HGX-1 hooks to servers via PCIe interface. Developed under the Olympus program guidelines, the design is open source such that users could easily take the files to their preferred ODM for manufacture. It will be interesting to see how cloud providers respond and whether significant tweaking takes place to optimize the HGX design for particular AI/Dl workloads.
  • Big Basin. Facebook says Big Basin trains models that are 30 percent larger because of enhanced throughput and an increase in memory from 12 GB to 16 GB. “In tests with popular image classification models like ResNet-50, we were able to reach almost 100 percent improvement in throughput compared with Big Sur,” according to Arlene Gabriana Murillo’s FB blog. Designed as a JBOG (just a bunch of GPUs) to allow for the complete disaggregation of the CPU compute from the GPUs, it does not have compute and networking built in, so it requires an external server head node. “By designing [Big Basin] this way, we can connect our Open Compute servers as a separate building block from the Big Basin unit and scale each block independently as new CPUs and GPUs are released,” says FB in a blog Built in collaboration with ODM Quanta Cloud Technology, the Big Basin system also features Tesla P100 GPU accelerators.
  • RIKEN’s new DGX-1 supercomputer (Image courtesy of Fujitsu Ltd.)

    Fujitsu AI Supercomputer. The new RIKEN machine will include 24 DGX-1 systems as well as 32 Fujitsu PRIMERGY servers and is expected to reach 4 petaflops peak performance when running half-precision floating point calculations. The new supercomputer is scheduled to go online next month and will be used to accelerate AI research in medicine, manufacturing, healthcare and disaster preparedness.

  • Jetson TX2. A replacement for the Jetson TX1, the embedded module (SoC) features Pascal graphics with 256 CUDA cores while its CPU is an HMP (Heterogeneous Multi-Processor Architecture) Dual Denver plus a quad ARM Cortex-A57. Nvidia, like others, seems to be doing more with ARM, which though strong in the embedded and mobile space has struggled to penetrate the datacenter. That may be changing. Microsoft announced an ARM initiative on cloud workflows this week. “We have been running evaluations side by side with our production workloads and what we see is quite compelling. The high Instruction Per Cycle (IPC) counts, high core and thread counts, the connectivity options and the integration that we see across the ARM ecosystem is very exciting and continue to improve,” wrote Leendert van Doorn of Microsoft in a blog.

The FB Big Basin and Microsoft embrace of HGX-1 suggest some of different ways in which Nvidia GPU technology may be deployed by cloud vendors. The Microsoft HGX-1, built by Ingrasys (a Foxconn subsidiary), is flexible in the sense that the HGX-1 is deliberately designed to accommodate differing AI/DL workloads.

“[For Facebook], it’s really about their particular workloads. They talk about natural language processing, image processing, and all of this is really core to the services they provide their users. So they built a system that is best suited for their workload. The topology is very similar to the HGX-1 in that it has the same hypercube mesh and has eight Tesla P100s in the box with NVLink. The only difference is that it has been optimized and tuned for deep learning training, which means it has been hardened for DL training as opposed to HGX-1 which is highly configurable,” said Kim.

Interesting, when Microsoft describes the Olympus philosophy it says: “Project Olympus applies a model of open source collaboration that has been embraced for software but has historically been at odds with the physical demands of developing hardware. We’re taking a very different approach by contributing our next generation cloud hardware designs when they are approx. 50% complete – much earlier in the cycle than any previous OCP project. By sharing designs that are actively in development, Project Olympus will allow the community to contribute to the ecosystem by downloading, modifying, and forking the hardware design just like open source software,” wrote Kushagra Vaid, GM, Azure Hardware Infrastructure in a fall 2016 blog.

The HGX-1 is a complete design, said Kim but that doesn’t preclude optimization. “The design itself is complete and so you can go to Foxconn and give them this design and file and say can you manufacture this for us. It’s been tested and it works. Certainly because it is open source I can imagine other cloud vendors going in and saying I could tweak this to be more efficient specifically for the target market that I am going after and that one of the benefits. I wouldn’t be surprised if that happens. I think it gives each cloud provider an ability to optimize the system for their particular workload.”

Will there be an HGX-2? “That’s a good question. The idea is that the standards do evolve to meet the needs of the evolving workloads. We are going to continue to work with our cloud vendors to provide the best answers for that. Without giving you any roadmap, we do expect it to evolve,” said Kim.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This