CPU-based Visualization Positions for Exascale Supercomputing

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

March 16, 2017

Editor’s Note: In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. This article is a follow-on to a 2015 contribution from Jeffers and traces the progress for CPU-based software-defined visualization from that time.

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adoption. This rapid uptake is the result of two factors: (1) the general availability of highly-optimized CPU-based rendering software such as the open-source OSPRay ray tracing library and the high performance OpenSWR raster library in Mesa3d  integrated into popular visualization tools like Kitware’s Paraview and VTK, as well as the community tool, VisIt; and (2) SDVis filling the big data visualization community need for software that uses runtime visualization algorithms that can handle giga-scale and larger data.

These technologies aim to enable production visualization at scale on high performance computing resources, including supercomputers at Argonne National Laboratory, Los Alamos National Laboratory, the Texas Advanced Computing Center and many other facilities.

Award winning results, such as the Best Visualization and Data Analytics Showcase award won by the Los Alamos’ Data Science at Scale Team at Supercomputing 2016, highlight the fact that CPU-based rendering is now at the forefront of visualization technology. The LANL team’s award winning asteroid impact visualization is featured as an LANL newsroom picture of the week.

Figure 1: One image from the LANL asteroid impact video (Source: LANL)

Dr. Aaron Knoll (Research Scientist, Scientific Computing and Imaging Institute at the University of Utah) explains that the key change from last year lies in how much OSPRay and other SDVis CPU-based visualization libraries are now being used. “2016 is the year OSPRay became used in practice and production,” he said.

This trend has occurred throughout the scientific community. For example, four out of six finalists at Supercomputing 2016 used OSPRay and/or OpenSWR for their CPU-based visualizations. Of the remaining two finalists, one expressed interest in VMD rendering using OSPRay (now supported by that package), and the other used purely information visualization techniques outside the scope of OSPRay and SWR. Knoll also observed that about half of the non-finalists – at least 50 percent – used OSPRay or CPU-based visualization in some fashion. “Before,” he said, “people knew that OSPRay existed – now they just use it by default in production.”  So, unlike 2015, CPU-based visualizations are no longer a contrary view.

An exascale requirement

The idea behind SDVis is that larger data sets imply higher resolution (and therefore quality) that is too big for typical GPU memory. Focusing directly on the needs of large scale visualization rather than first targeting gaming means that SDVis software components can be designed to utilize massive-memory hardware and algorithms that scale as needed across the nodes in a cluster or inside a computational cloud.

Massive data poses a problem as it simply becomes impractical from a runtime point of view to move it around or keep multiple copies. It just takes too much time and memory capacity. This makes in-situ visualization (which minimizes data movement by running the visualization and simulation software on the same hardware) a “must-have.”  As I like to say, “A picture is worth an Exabyte”.

Eliminating data movement with in-situ visualization is a hot topic in the scientific literature and is now viewed by experts as a technology requirement for visualization in the exascale era. The paper “An Image-based Approach to Extreme Scale In Situ Visualization and Analysis” by James Ahrens et al. quantifies the data movement challenge as follows: “Imagery is on the order of 10**6 in size, whereas extreme scale simulation data is on the order of 10**15 in size.” Nine orders of magnitude is significant.

Ahrens explained, “We believe very strongly that in-situ is a requirement for exascale supercomputing.” More specifically, “For exascale, we need to be portable across all platforms. It’s an IO and memory capacity issue.” Knoll agrees that in-situ visualization is a requirement, “the old way of business has to change.”

Managing success: CPU-based SDVis robustly encompasses new algorithmic and software approaches

Dr. Knoll points out that in-situ visualization encompasses a spectrum of technologies, not just software alone. He references the 3D XPoint and Intel Omni-Path architecture. Jointly developed by Micron and Intel, 3D XPoint is a non-volatile storage media that can be used as storage or to augment main memory as the media is byte-addressable. Intel Omni-Path is a high-bandwidth, low-latency communications architecture created by Intel to increase performance and decrease cost.

“Memory is key,” Knoll stresses. He points out that, “An Intel Xeon Phi processor can support up to 24x more DRAM than an equivalent single GPU (NVIDIA Tesla P100 with 16 GB RAM), and an Intel Xeon workstations (e.g., the Brickland-EX platform with 6 TB) up to 384x more. With 3D XPoint the cost of this ‘memory’ will decrease substantially, which goes hand in hand with the benefits of big data runtime algorithms where it does not cost substantially more to access (and render) 6 TB or data than 16 GB of data.”

Knoll envisions 3D XPoint working as an in-core file-system at scale that blurs the line between RDMA, in-situ visualization, and distributed file-systems. One example is the CORAL project that, “leverages Intel Crystal Ridge [now known as 3D XPoint] non-volatile memory technology that is configured in DDR4 compatible DIMM form factor with processor load/store access semantics on CORAL point design compute nodes. This software design will allow applications running on any CORAL point design compute node to have a global view of and global access to Crystal Ridge that is on other compute nodes.”

“This technology gets me very excited,” Knoll says, noting the importance of the communications fabrics in making fast distributed memory a reality.

Focusing visualization solutions on data size rather than gaming usage means that SDVis software components can be designed to utilize massive-memory hardware and scale as needed across the nodes in a cluster or inside a computational cloud. This frees developers to design for the user rather than the hardware.

Figure 2: The Los Alamos team won the visualization award at SC16 for their SDVis based work

The transition from OpenGL targeted hardware rasterization to CPU-based rendering means that algorithm designers can exploit large memory (100’s of GBs or larger) visualization nodes to create logarithmic runtime algorithms.

Dr. Knoll stresses the importance of logarithmic runtime algorithms (a subtle but key technical point) as users are faced with orders of magnitude increases in data sizes on the big supercomputers. Logarithmic runtime algorithms are important for big visualizations and exascale computing as the runtime increases slowly (e.g. logarithmically) even when data sizes increase by orders of magnitude. Such algorithms tend to consume large amounts of in-core memory to hold the data and associated data structures. Thus memory capacity and latency are two key hardware metrics.

Research at the University of Utah [PDF] shows a single large memory (3 terabyte) workstation can deliver competitive and even superior interactive rendering performance compared to a 128-node GPU cluster; this is paradigm-changing. The group is exploring in-situ visualization using P-k-d trees and other fast, in-core approaches [PDF]. This project at the University of Utah showed that large “direct” in-core techniques are not only viable, but are at the bleeding edge of visualization research.

Figure 3: Uintah combustion simulation visualized with VisIt using OSPRay

Our design efforts on OSPRay includes the recognition that our software cannot – and does not – exist in a vacuum. The challenge is to provide sufficient modularity so researchers can adapt the package without having to touch the golden build source code. In other words, OSPRay is designed so researchers can explore new approaches without breaking the code for everyone. Our solution was to extend OSPRay with the aptly named ‘modules’ capability, which first appeared in v1.2.0. In using modules, the University of Utah team notes that modules provide a logical pairing between algorithm and data where researchers can: (1) write a module and (2) pair it with distributed parallel data processing and rendering API such as the Argonne vl3 volume rendering library. Ultimately, this can allow simpler workflows and more efficient visualization of specific large problems, such as materials and cosmology data. By design, successful and widely-utilized modules can be evaluated by the OSPRay team across a number of platforms as possible additions to the main body of the OSPRay code. Such accessibility and portability across CPU platforms highlights the adaptable yet robust characteristics of SDVis software.

Education will likely increase the rate of adoption

The adoption rate over the past year has been phenomenal, but we expect it to increase even further. As Dr. Knoll stated, “2016 is the year OSPRay became used in practice and production.” As a production visualization tool for scientific computing, OSPRay and more generically CPU-based SDVis has clearly come of age. Integration into packages such as ParaView and VisIt has made CPU-based rendering mainstream, which in turn means that using a CPU for visualization can no longer be considered a contrary viewpoint; it’s becoming the norm.

It is expected that education will likely increase the rate of adoption. A number of excellent educational resources are available online. For example, view the 2016 Intel HPC Developer software visualization track videos to delve more deeply into the technology and third-party use cases. Of course, hands-on experience and interacting with peers is always of value. Such interactions can be had at the IXPUG May 2017 Visualization workshop at the Texas Advanced Computing Center. Immediate hands-on experience can also be had simply by working with VisIt and ParaView, or downloading the OSPRay code from github and the OpenSWR code via the Mesa3D website.  Further background and up to date information about Software Defined Visualization is available at our IDZ (Intel Developer Zone) SDVis landing page., and in Chapter 17 of my Morgan Kaufman published book Intel Xeon Phi High Performance Programming: Knights Landing Edition.

To utilize CPU-based SDVis in your software, look to the following packages: (1) the OSPRay scalable, and portable ray tracing engine; (2) the Embree library of high-performance ray-tracing kernels; and (3) OpenSWR, a drop-in OpenGL replacement, highly scalable, CPU-based software rasterizer all provide core functionality for current SDV applications.

About the Author

Jim Jeffers is a Principal Engineer and engineering leader at Intel who is passionate about world changing technology as well as author and industry expert on parallel computing hardware.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition of HPC leader Jack Wells, director of science, Oak Ridge Le Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

5 Benefits Artificial Intelligence Brings to HPC

According to findings from Hyperion Research, simulation is primarily responsible for expanding the global HPC market from $2 billion in 1990 to a projected $38 billion in 2022. Read more…

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage and data management for AI, big data and HPC acceleration. I Read more…

By Doug Black

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This