CPU-based Visualization Positions for Exascale Supercomputing

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

March 16, 2017

Editor’s Note: In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. This article is a follow-on to a 2015 contribution from Jeffers and traces the progress for CPU-based software-defined visualization from that time.

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adoption. This rapid uptake is the result of two factors: (1) the general availability of highly-optimized CPU-based rendering software such as the open-source OSPRay ray tracing library and the high performance OpenSWR raster library in Mesa3d  integrated into popular visualization tools like Kitware’s Paraview and VTK, as well as the community tool, VisIt; and (2) SDVis filling the big data visualization community need for software that uses runtime visualization algorithms that can handle giga-scale and larger data.

These technologies aim to enable production visualization at scale on high performance computing resources, including supercomputers at Argonne National Laboratory, Los Alamos National Laboratory, the Texas Advanced Computing Center and many other facilities.

Award winning results, such as the Best Visualization and Data Analytics Showcase award won by the Los Alamos’ Data Science at Scale Team at Supercomputing 2016, highlight the fact that CPU-based rendering is now at the forefront of visualization technology. The LANL team’s award winning asteroid impact visualization is featured as an LANL newsroom picture of the week.

Figure 1: One image from the LANL asteroid impact video (Source: LANL)

Dr. Aaron Knoll (Research Scientist, Scientific Computing and Imaging Institute at the University of Utah) explains that the key change from last year lies in how much OSPRay and other SDVis CPU-based visualization libraries are now being used. “2016 is the year OSPRay became used in practice and production,” he said.

This trend has occurred throughout the scientific community. For example, four out of six finalists at Supercomputing 2016 used OSPRay and/or OpenSWR for their CPU-based visualizations. Of the remaining two finalists, one expressed interest in VMD rendering using OSPRay (now supported by that package), and the other used purely information visualization techniques outside the scope of OSPRay and SWR. Knoll also observed that about half of the non-finalists – at least 50 percent – used OSPRay or CPU-based visualization in some fashion. “Before,” he said, “people knew that OSPRay existed – now they just use it by default in production.”  So, unlike 2015, CPU-based visualizations are no longer a contrary view.

An exascale requirement

The idea behind SDVis is that larger data sets imply higher resolution (and therefore quality) that is too big for typical GPU memory. Focusing directly on the needs of large scale visualization rather than first targeting gaming means that SDVis software components can be designed to utilize massive-memory hardware and algorithms that scale as needed across the nodes in a cluster or inside a computational cloud.

Massive data poses a problem as it simply becomes impractical from a runtime point of view to move it around or keep multiple copies. It just takes too much time and memory capacity. This makes in-situ visualization (which minimizes data movement by running the visualization and simulation software on the same hardware) a “must-have.”  As I like to say, “A picture is worth an Exabyte”.

Eliminating data movement with in-situ visualization is a hot topic in the scientific literature and is now viewed by experts as a technology requirement for visualization in the exascale era. The paper “An Image-based Approach to Extreme Scale In Situ Visualization and Analysis” by James Ahrens et al. quantifies the data movement challenge as follows: “Imagery is on the order of 10**6 in size, whereas extreme scale simulation data is on the order of 10**15 in size.” Nine orders of magnitude is significant.

Ahrens explained, “We believe very strongly that in-situ is a requirement for exascale supercomputing.” More specifically, “For exascale, we need to be portable across all platforms. It’s an IO and memory capacity issue.” Knoll agrees that in-situ visualization is a requirement, “the old way of business has to change.”

Managing success: CPU-based SDVis robustly encompasses new algorithmic and software approaches

Dr. Knoll points out that in-situ visualization encompasses a spectrum of technologies, not just software alone. He references the 3D XPoint and Intel Omni-Path architecture. Jointly developed by Micron and Intel, 3D XPoint is a non-volatile storage media that can be used as storage or to augment main memory as the media is byte-addressable. Intel Omni-Path is a high-bandwidth, low-latency communications architecture created by Intel to increase performance and decrease cost.

“Memory is key,” Knoll stresses. He points out that, “An Intel Xeon Phi processor can support up to 24x more DRAM than an equivalent single GPU (NVIDIA Tesla P100 with 16 GB RAM), and an Intel Xeon workstations (e.g., the Brickland-EX platform with 6 TB) up to 384x more. With 3D XPoint the cost of this ‘memory’ will decrease substantially, which goes hand in hand with the benefits of big data runtime algorithms where it does not cost substantially more to access (and render) 6 TB or data than 16 GB of data.”

Knoll envisions 3D XPoint working as an in-core file-system at scale that blurs the line between RDMA, in-situ visualization, and distributed file-systems. One example is the CORAL project that, “leverages Intel Crystal Ridge [now known as 3D XPoint] non-volatile memory technology that is configured in DDR4 compatible DIMM form factor with processor load/store access semantics on CORAL point design compute nodes. This software design will allow applications running on any CORAL point design compute node to have a global view of and global access to Crystal Ridge that is on other compute nodes.”

“This technology gets me very excited,” Knoll says, noting the importance of the communications fabrics in making fast distributed memory a reality.

Focusing visualization solutions on data size rather than gaming usage means that SDVis software components can be designed to utilize massive-memory hardware and scale as needed across the nodes in a cluster or inside a computational cloud. This frees developers to design for the user rather than the hardware.

Figure 2: The Los Alamos team won the visualization award at SC16 for their SDVis based work

The transition from OpenGL targeted hardware rasterization to CPU-based rendering means that algorithm designers can exploit large memory (100’s of GBs or larger) visualization nodes to create logarithmic runtime algorithms.

Dr. Knoll stresses the importance of logarithmic runtime algorithms (a subtle but key technical point) as users are faced with orders of magnitude increases in data sizes on the big supercomputers. Logarithmic runtime algorithms are important for big visualizations and exascale computing as the runtime increases slowly (e.g. logarithmically) even when data sizes increase by orders of magnitude. Such algorithms tend to consume large amounts of in-core memory to hold the data and associated data structures. Thus memory capacity and latency are two key hardware metrics.

Research at the University of Utah [PDF] shows a single large memory (3 terabyte) workstation can deliver competitive and even superior interactive rendering performance compared to a 128-node GPU cluster; this is paradigm-changing. The group is exploring in-situ visualization using P-k-d trees and other fast, in-core approaches [PDF]. This project at the University of Utah showed that large “direct” in-core techniques are not only viable, but are at the bleeding edge of visualization research.

Figure 3: Uintah combustion simulation visualized with VisIt using OSPRay

Our design efforts on OSPRay includes the recognition that our software cannot – and does not – exist in a vacuum. The challenge is to provide sufficient modularity so researchers can adapt the package without having to touch the golden build source code. In other words, OSPRay is designed so researchers can explore new approaches without breaking the code for everyone. Our solution was to extend OSPRay with the aptly named ‘modules’ capability, which first appeared in v1.2.0. In using modules, the University of Utah team notes that modules provide a logical pairing between algorithm and data where researchers can: (1) write a module and (2) pair it with distributed parallel data processing and rendering API such as the Argonne vl3 volume rendering library. Ultimately, this can allow simpler workflows and more efficient visualization of specific large problems, such as materials and cosmology data. By design, successful and widely-utilized modules can be evaluated by the OSPRay team across a number of platforms as possible additions to the main body of the OSPRay code. Such accessibility and portability across CPU platforms highlights the adaptable yet robust characteristics of SDVis software.

Education will likely increase the rate of adoption

The adoption rate over the past year has been phenomenal, but we expect it to increase even further. As Dr. Knoll stated, “2016 is the year OSPRay became used in practice and production.” As a production visualization tool for scientific computing, OSPRay and more generically CPU-based SDVis has clearly come of age. Integration into packages such as ParaView and VisIt has made CPU-based rendering mainstream, which in turn means that using a CPU for visualization can no longer be considered a contrary viewpoint; it’s becoming the norm.

It is expected that education will likely increase the rate of adoption. A number of excellent educational resources are available online. For example, view the 2016 Intel HPC Developer software visualization track videos to delve more deeply into the technology and third-party use cases. Of course, hands-on experience and interacting with peers is always of value. Such interactions can be had at the IXPUG May 2017 Visualization workshop at the Texas Advanced Computing Center. Immediate hands-on experience can also be had simply by working with VisIt and ParaView, or downloading the OSPRay code from github and the OpenSWR code via the Mesa3D website.  Further background and up to date information about Software Defined Visualization is available at our IDZ (Intel Developer Zone) SDVis landing page., and in Chapter 17 of my Morgan Kaufman published book Intel Xeon Phi High Performance Programming: Knights Landing Edition.

To utilize CPU-based SDVis in your software, look to the following packages: (1) the OSPRay scalable, and portable ray tracing engine; (2) the Embree library of high-performance ray-tracing kernels; and (3) OpenSWR, a drop-in OpenGL replacement, highly scalable, CPU-based software rasterizer all provide core functionality for current SDV applications.

About the Author

Jim Jeffers is a Principal Engineer and engineering leader at Intel who is passionate about world changing technology as well as author and industry expert on parallel computing hardware.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six thousand miles away in Alaska, caused tsunamis across the entir Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Researchers Achieve 99 Percent Quantum Accuracy with Silicon-Embedded Qubits 

January 20, 2022

Researchers in Australia and the U.S. have made exciting headway in the quantum computing arms race. A multi-institutional team including the University of New South Wales and Sandia National Laboratory announced that th Read more…

Trio of Supercomputers Powers Estimate of Carbon in Earth’s Outer Core

January 20, 2022

Carbon is one of the essential building blocks of life on Earth, and it—along with hydrogen, nitrogen and oxygen—is one of the key elements researchers look for when they search for habitable planets and work to unde Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

AWS Solution Channel

shutterstock 718231072

Accelerating drug discovery with Amazon EC2 Spot Instances

This post was contributed by Cristian Măgherușan-Stanciu, Sr. Specialist Solution Architect, EC2 Spot, with contributions from Cristian Kniep, Sr. Developer Advocate for HPC and AWS Batch at AWS, Carlos Manzanedo Rueda, Principal Solutions Architect, EC2 Spot at AWS, Ludvig Nordstrom, Principal Solutions Architect at AWS, Vytautas Gapsys, project group leader at the Max Planck Institute for Biophysical Chemistry, and Carsten Kutzner, staff scientist at the Max Planck Institute for Biophysical Chemistry. Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire