CPU-based Visualization Positions for Exascale Supercomputing

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

March 16, 2017

Editor’s Note: In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. This article is a follow-on to a 2015 contribution from Jeffers and traces the progress for CPU-based software-defined visualization from that time.

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adoption. This rapid uptake is the result of two factors: (1) the general availability of highly-optimized CPU-based rendering software such as the open-source OSPRay ray tracing library and the high performance OpenSWR raster library in Mesa3d  integrated into popular visualization tools like Kitware’s Paraview and VTK, as well as the community tool, VisIt; and (2) SDVis filling the big data visualization community need for software that uses runtime visualization algorithms that can handle giga-scale and larger data.

These technologies aim to enable production visualization at scale on high performance computing resources, including supercomputers at Argonne National Laboratory, Los Alamos National Laboratory, the Texas Advanced Computing Center and many other facilities.

Award winning results, such as the Best Visualization and Data Analytics Showcase award won by the Los Alamos’ Data Science at Scale Team at Supercomputing 2016, highlight the fact that CPU-based rendering is now at the forefront of visualization technology. The LANL team’s award winning asteroid impact visualization is featured as an LANL newsroom picture of the week.

Figure 1: One image from the LANL asteroid impact video (Source: LANL)

Dr. Aaron Knoll (Research Scientist, Scientific Computing and Imaging Institute at the University of Utah) explains that the key change from last year lies in how much OSPRay and other SDVis CPU-based visualization libraries are now being used. “2016 is the year OSPRay became used in practice and production,” he said.

This trend has occurred throughout the scientific community. For example, four out of six finalists at Supercomputing 2016 used OSPRay and/or OpenSWR for their CPU-based visualizations. Of the remaining two finalists, one expressed interest in VMD rendering using OSPRay (now supported by that package), and the other used purely information visualization techniques outside the scope of OSPRay and SWR. Knoll also observed that about half of the non-finalists – at least 50 percent – used OSPRay or CPU-based visualization in some fashion. “Before,” he said, “people knew that OSPRay existed – now they just use it by default in production.”  So, unlike 2015, CPU-based visualizations are no longer a contrary view.

An exascale requirement

The idea behind SDVis is that larger data sets imply higher resolution (and therefore quality) that is too big for typical GPU memory. Focusing directly on the needs of large scale visualization rather than first targeting gaming means that SDVis software components can be designed to utilize massive-memory hardware and algorithms that scale as needed across the nodes in a cluster or inside a computational cloud.

Massive data poses a problem as it simply becomes impractical from a runtime point of view to move it around or keep multiple copies. It just takes too much time and memory capacity. This makes in-situ visualization (which minimizes data movement by running the visualization and simulation software on the same hardware) a “must-have.”  As I like to say, “A picture is worth an Exabyte”.

Eliminating data movement with in-situ visualization is a hot topic in the scientific literature and is now viewed by experts as a technology requirement for visualization in the exascale era. The paper “An Image-based Approach to Extreme Scale In Situ Visualization and Analysis” by James Ahrens et al. quantifies the data movement challenge as follows: “Imagery is on the order of 10**6 in size, whereas extreme scale simulation data is on the order of 10**15 in size.” Nine orders of magnitude is significant.

Ahrens explained, “We believe very strongly that in-situ is a requirement for exascale supercomputing.” More specifically, “For exascale, we need to be portable across all platforms. It’s an IO and memory capacity issue.” Knoll agrees that in-situ visualization is a requirement, “the old way of business has to change.”

Managing success: CPU-based SDVis robustly encompasses new algorithmic and software approaches

Dr. Knoll points out that in-situ visualization encompasses a spectrum of technologies, not just software alone. He references the 3D XPoint and Intel Omni-Path architecture. Jointly developed by Micron and Intel, 3D XPoint is a non-volatile storage media that can be used as storage or to augment main memory as the media is byte-addressable. Intel Omni-Path is a high-bandwidth, low-latency communications architecture created by Intel to increase performance and decrease cost.

“Memory is key,” Knoll stresses. He points out that, “An Intel Xeon Phi processor can support up to 24x more DRAM than an equivalent single GPU (NVIDIA Tesla P100 with 16 GB RAM), and an Intel Xeon workstations (e.g., the Brickland-EX platform with 6 TB) up to 384x more. With 3D XPoint the cost of this ‘memory’ will decrease substantially, which goes hand in hand with the benefits of big data runtime algorithms where it does not cost substantially more to access (and render) 6 TB or data than 16 GB of data.”

Knoll envisions 3D XPoint working as an in-core file-system at scale that blurs the line between RDMA, in-situ visualization, and distributed file-systems. One example is the CORAL project that, “leverages Intel Crystal Ridge [now known as 3D XPoint] non-volatile memory technology that is configured in DDR4 compatible DIMM form factor with processor load/store access semantics on CORAL point design compute nodes. This software design will allow applications running on any CORAL point design compute node to have a global view of and global access to Crystal Ridge that is on other compute nodes.”

“This technology gets me very excited,” Knoll says, noting the importance of the communications fabrics in making fast distributed memory a reality.

Focusing visualization solutions on data size rather than gaming usage means that SDVis software components can be designed to utilize massive-memory hardware and scale as needed across the nodes in a cluster or inside a computational cloud. This frees developers to design for the user rather than the hardware.

Figure 2: The Los Alamos team won the visualization award at SC16 for their SDVis based work

The transition from OpenGL targeted hardware rasterization to CPU-based rendering means that algorithm designers can exploit large memory (100’s of GBs or larger) visualization nodes to create logarithmic runtime algorithms.

Dr. Knoll stresses the importance of logarithmic runtime algorithms (a subtle but key technical point) as users are faced with orders of magnitude increases in data sizes on the big supercomputers. Logarithmic runtime algorithms are important for big visualizations and exascale computing as the runtime increases slowly (e.g. logarithmically) even when data sizes increase by orders of magnitude. Such algorithms tend to consume large amounts of in-core memory to hold the data and associated data structures. Thus memory capacity and latency are two key hardware metrics.

Research at the University of Utah [PDF] shows a single large memory (3 terabyte) workstation can deliver competitive and even superior interactive rendering performance compared to a 128-node GPU cluster; this is paradigm-changing. The group is exploring in-situ visualization using P-k-d trees and other fast, in-core approaches [PDF]. This project at the University of Utah showed that large “direct” in-core techniques are not only viable, but are at the bleeding edge of visualization research.

Figure 3: Uintah combustion simulation visualized with VisIt using OSPRay

Our design efforts on OSPRay includes the recognition that our software cannot – and does not – exist in a vacuum. The challenge is to provide sufficient modularity so researchers can adapt the package without having to touch the golden build source code. In other words, OSPRay is designed so researchers can explore new approaches without breaking the code for everyone. Our solution was to extend OSPRay with the aptly named ‘modules’ capability, which first appeared in v1.2.0. In using modules, the University of Utah team notes that modules provide a logical pairing between algorithm and data where researchers can: (1) write a module and (2) pair it with distributed parallel data processing and rendering API such as the Argonne vl3 volume rendering library. Ultimately, this can allow simpler workflows and more efficient visualization of specific large problems, such as materials and cosmology data. By design, successful and widely-utilized modules can be evaluated by the OSPRay team across a number of platforms as possible additions to the main body of the OSPRay code. Such accessibility and portability across CPU platforms highlights the adaptable yet robust characteristics of SDVis software.

Education will likely increase the rate of adoption

The adoption rate over the past year has been phenomenal, but we expect it to increase even further. As Dr. Knoll stated, “2016 is the year OSPRay became used in practice and production.” As a production visualization tool for scientific computing, OSPRay and more generically CPU-based SDVis has clearly come of age. Integration into packages such as ParaView and VisIt has made CPU-based rendering mainstream, which in turn means that using a CPU for visualization can no longer be considered a contrary viewpoint; it’s becoming the norm.

It is expected that education will likely increase the rate of adoption. A number of excellent educational resources are available online. For example, view the 2016 Intel HPC Developer software visualization track videos to delve more deeply into the technology and third-party use cases. Of course, hands-on experience and interacting with peers is always of value. Such interactions can be had at the IXPUG May 2017 Visualization workshop at the Texas Advanced Computing Center. Immediate hands-on experience can also be had simply by working with VisIt and ParaView, or downloading the OSPRay code from github and the OpenSWR code via the Mesa3D website.  Further background and up to date information about Software Defined Visualization is available at our IDZ (Intel Developer Zone) SDVis landing page., and in Chapter 17 of my Morgan Kaufman published book Intel Xeon Phi High Performance Programming: Knights Landing Edition.

To utilize CPU-based SDVis in your software, look to the following packages: (1) the OSPRay scalable, and portable ray tracing engine; (2) the Embree library of high-performance ray-tracing kernels; and (3) OpenSWR, a drop-in OpenGL replacement, highly scalable, CPU-based software rasterizer all provide core functionality for current SDV applications.

About the Author

Jim Jeffers is a Principal Engineer and engineering leader at Intel who is passionate about world changing technology as well as author and industry expert on parallel computing hardware.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization


Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers


Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow