Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

By John Russell

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-world applications are depends on whom you talk to and for what kinds of applications. Los Alamos National Lab, for example, has an active application development effort for its D-Wave system and LANL researcher Susan Mniszewski and colleagues have made progress on using the D-Wave machine for aspects of quantum molecular dynamics (QMD) simulations.

At CeBIT this week D-Wave and Volkswagen will discuss their pilot project to monitor and control taxi traffic in Beijing using a hybrid HPC-quantum system – this is on the heels of recent customer upgrade news from D-Wave (more below). Last week IBM announced expanded access to its five-qubit cloud-based quantum developer platform. In early March, researchers from the Google Quantum AI Lab published an excellent commentary in Nature examining real-world opportunities, challenges and timeframes for quantum computing more broadly. Google is also considering making its homegrown quantum capability available through the cloud.

As an overview, the Google commentary provides a great snapshot, noting soberly that challenges such as the lack of solid error correction and the small size (number of qubits) in today’s machines – whether “universal” digital machines like IBM’s or “analog” adiabatic annealing machines like D-Wave’s – have prompted many observers to declare useful quantum computing is still a decade way. Not so fast, says Google.

“This conservative view of quantum computing gives the impression that investors will benefit only in the long term. We contend that short-term returns are possible with the small devices that will emerge within the next five years, even though these will lack full error correction…Heuristic ‘hybrid’ methods that blend quantum and classical approaches could be the foundation for powerful future applications. The recent success of neural networks in machine learning is a good example,” write Masoud Mohseni, Peter Read, and John Martinis (a 2017 HPCwire Person to Watch) and colleagues (Nature, March 8, “Commercialize early quantum technologies”)

The D-Wave/VW project is a good example of a hybrid approach (details to follow) but first here’s a brief summary of recent quantum computing news:

  • IBM released a new API and upgraded simulator for modeling circuits up to 20 qubits on its 5-qubit platform. It also announced plans for a software developer kit by mid-year for building “simple” quantum applications. So far, says IBM, its quantum cloud has attracted about 40,000 users, including, for example, the Massachusetts Institute of Technology, which used the cloud service for its online quantum information science course. IBM also noted heavy use of the service by Chinese researchers. (See HPCwire coverage, IBM Touts Hybrid Approach to Quantum Computing)
  • D-Wave has been actively extending its development ecosystem (qbsolv (D-wave) and qmasm (LANL, et al.) and says researchers have recently been able to simulate a 20,000 qubit system on 1,000-qubit machine using qbsolv (more below). After announcing a 2,000-quibit machine in the fall, the company has begun deploying them. The first will be for a new customer, Temporal Defense System, and another is planned for the Google/NASA/USRA partnership which has a 1,000-qubit machine now. D-wave also just announced Virginia Tech and the Hume Center will begin using D-Wave systems for work on defense and intelligence applications.
  • Google’s commentary declares: “We anticipate that, within a few years, well-controlled quantum systems may be able to perform certain tasks much faster than conventional computers based on CMOS (complementary metal oxide–semiconductor) technology. Here we highlight three commercially viable uses for early quantum-computing devices: quantum simulation, quantum-assisted optimization and quantum sampling. Faster computing speeds in these areas would be commercially advantageous in sectors from artificial intelligence to finance and health care.”
D-Wave 2000Q System

Clearly there is a lot going on even at this stage of quantum computing’s development. There’s also been a good deal of wrangling over just what is a quantum computer and the differences between IBM’s “universal” digital approach – essentially a machine able to do anything computers do now – and D-Wave’s adiabatic annealing approach, which is currently intended to solve specific classes of optimization problems.

“They are different kinds of machines. No one has a universal quantum computer now, so you have to look at each case individually for its particular strengths and weaknesses,” explained Martinis to HPCwire. “The D-wave has minimal quantum coherence (it loses the information exchanged between qubits quite quickly), but makes up for it by having many qubits.”

“The IBM machine is small, but the qubits have quantum coherence enough to do some standard quantum algorithms. Right now it is not powerful, as you can run quantum simulations on classical computers quite easily. But by adding qubits the power will scale up quickly. It has the architecture of a universal machine and has enough quantum coherence to behave like one for very small problems,” Martinis said.

Noteworthy, Google has developed 9-qubit devices that have 3-5x more coherence than IBM, according to Martinis, but they are not on the cloud yet. “We are ready to scale up now, and plan to have this year a ‘quantum supremacy’ device that has to be checked with a supercomputer. We are thinking of offering cloud also, but are more or less waiting until we have a hardware device that gives you more power than a classical simulation.”

Quantum supremacy as described in the Google commentary is a term coined by theoretical physicist John Preskill to describe “the ability of a quantum processor to perform, in a short time, a well-defined mathematical task that even the largest classical supercomputers (such as China’s Sunway TaihuLight) would be unable to complete within any reasonable time frame. We predict that, in a few years, an experiment achieving quantum supremacy will be performed.”

Bo Ewald

For the moment, D-Wave is the only vendor offering near-production machines versus research machines, said Bo Ewald, the company’s ever-cheerful evangelist. He quickly agrees though that at least for now there aren’t any production-ready applications. Developing a quantum tool/software ecosystem is a driving focus at D-wave. The LANL app dev work, though impressive, still represents proto-application development. Nevertheless the ecosystem of tools is growing quickly.

“We have defined a software architecture that has several layers starting at the quantum machine instruction layer where if you want to program in machine language you are certainly welcome to do that; that is kind of the way people had to do it in the early days,” said Ewald.

“The next layer up is if you want to be able to create quantum machine instructions from C or C++ or Python. We have now libraries that run on host machines, regular HPC machines, so you can use those languages to generate programs that run on the D-Wave machine but the challenge that we have faced, that customers have faced, is that our machines had 500 qubits or 1,000 qubits and now 2,000; we know there are problems that are going to consume many more qubits than that,” he said.

For D-Wave systems, qbsolv helps address this problem. It allows a meta-description of the machine and the problem you want to solve as quadratic unconstrained binary optimization or QUBO. It’s an intermediate representation. D-Wave then extended this capability to what it calls virtual QUBOs likening it to virtual memory.

“You can create QUBOs or representations of problems which are much larger than the machine itself and then using combined classical computer and quantum computer techniques we could partition the problem and solve them in chunks and then kind of glue them back together after we solved the D-Wave part. We’ve done that now with the 1,000-qubit machine and run problems that have the equivalent of 20,000 qubits,” said Ewald, adding the new 2,000-qubit machines will handle problems of even greater size using this capability.

At LANL, researcher Scott Pakin has developed another tool – a quantum macro assembler for D-Wave systems (QMASM). Ewald said part of the goal of Pakin’s work was to determine, “if you could map gates onto the machine even though we are not a universal or a gate model. You can in fact model gates on our machine and he has started to [create] a library of gates (or gates, and gates, nand gates) and you can assemble those to become macros.”

Pakin said,My personal research interest has been in making the D-Wave easier to program. I’ve recently built something really nifty on top of QMASM: edif2qmasm, which is my answer to the question: Can one write classical-style code and run it on the D-Wave?

“For many difficult computational problems, solution verification is simple and fast. The idea behind edif2qmasm is that one can write an ordinary(-ish) program that reports if a proposed solution to a problem is in fact valid. This gets compiled for the D-Wave then run _backwards_, giving it ‘true’ for the proposed solution being valid and getting back a solution to the difficult computational problem.”

Pakin noted there are many examples on github to provide a feel for the power of this tool.

“For example, mult.v is a simple, one-line multiplier. Run it backwards, and it factors a number, which underlies modern data decryption. In a dozen or so lines of code, circsat.v evaluates a Boolean circuit. Run it backwards, and it tells you what inputs lead to an output of “true”, which used in areas of artificial intelligence, circuit design, and automatic theorem proving. map-color.v reports if a map is correctly colored with four colors such that no two adjacent regions have the same color. Run it backwards, and it _finds_ such a coloring.

“Although current-generation D-Wave systems are too limited to apply this approach to substantial problems, the trends in system scale and engineering precision indicate that some day we should be able to perform real work on this sort of system. And with the help of tools like edif2qmasm, programmers won’t need an advanced degree to figure out how to write code for it,” he explained.

The D-Wave/VW collaboration, just a year or so old, is one of the more interesting quantum computing proof-of-concept efforts because it tackles an optimization problem of the kind that is widespread in everyday life. As described by Ewald, VW CIO Martin Hoffman was making his yearly swing through Silicon Valley and stopped in at D-Wave and talk turned to the many optimization challenges big automakers face, such as supply logistics, vehicle delivery, and various machine learning tasks and doing a D-Wave project around one of them. Instead, said Ewald, VW eventually settled on a more driver-facing problem.

It turns out there are about 10,000 taxis in Beijing, said Ewald. Each has a GPS device and their positions are recorded every five seconds. Traffic congestion, of course, is a huge problem in Beijing. The idea was to explore if it was possible to create an application running on both traditional computer resources and D-Wave to help monitor and guide taxi movement more quickly and effectively.

“Ten thousand taxis on all of the streets in Beijing is way too big for our machine at this point, but they came to this same idea we talked about with qbsolve where you partition problems,” said Ewald. “On the traditional machines VW created a map and grid and subdivided the grid into quadrants and would find the quadrant that was the most red.” That’s red as in long cab waits.

The problem quadrant was then sent to D-Wave to be solved. “We would optimize the flow, basically minimize the wait time for all of the taxis within the quadrant, send that [solution] back to the traditional machine which would then send us the next most red, and we would try to turn it green,” said Ewald.

According to Ewald, VW was able to relatively create the “hybrid” solutions quickly and “get what they say are pretty good results.” They have talked about then being able to extend this project to predict where traffic jams are going to be and give people perhaps 45 minute warnings that there’s the potential for a traffic jam at such and such intersection. The two companies have a press conference planned this week at CeBIT to showcase the project.

It’s good to emphasize that the VW/D-wave exercise is developmental – what Ewald labels as a proto application: “But just the fact that they were able to get it running is a great step forward in many ways in that we believe our machine will be used side by side with existing machines, much like GPUs were used in the early days on graphics. In this case VW has demonstrated quite clearly how our machine, our QPU if you will, can be used in helping accelerate the work being done on a traditional HPC machines.”

Image art, chip diagram: D-Wave

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a variety of observatories and astronomers – but when COVID Read more…

By Oliver Peckham

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with the enterprise strengths of its recent acquisitions, notably Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Preparing for Exascale Science on Day 1

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascal Read more…

By Linda Barney

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This