Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

By John Russell

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-world applications are depends on whom you talk to and for what kinds of applications. Los Alamos National Lab, for example, has an active application development effort for its D-Wave system and LANL researcher Susan Mniszewski and colleagues have made progress on using the D-Wave machine for aspects of quantum molecular dynamics (QMD) simulations.

At CeBIT this week D-Wave and Volkswagen will discuss their pilot project to monitor and control taxi traffic in Beijing using a hybrid HPC-quantum system – this is on the heels of recent customer upgrade news from D-Wave (more below). Last week IBM announced expanded access to its five-qubit cloud-based quantum developer platform. In early March, researchers from the Google Quantum AI Lab published an excellent commentary in Nature examining real-world opportunities, challenges and timeframes for quantum computing more broadly. Google is also considering making its homegrown quantum capability available through the cloud.

As an overview, the Google commentary provides a great snapshot, noting soberly that challenges such as the lack of solid error correction and the small size (number of qubits) in today’s machines – whether “universal” digital machines like IBM’s or “analog” adiabatic annealing machines like D-Wave’s – have prompted many observers to declare useful quantum computing is still a decade way. Not so fast, says Google.

“This conservative view of quantum computing gives the impression that investors will benefit only in the long term. We contend that short-term returns are possible with the small devices that will emerge within the next five years, even though these will lack full error correction…Heuristic ‘hybrid’ methods that blend quantum and classical approaches could be the foundation for powerful future applications. The recent success of neural networks in machine learning is a good example,” write Masoud Mohseni, Peter Read, and John Martinis (a 2017 HPCwire Person to Watch) and colleagues (Nature, March 8, “Commercialize early quantum technologies”)

The D-Wave/VW project is a good example of a hybrid approach (details to follow) but first here’s a brief summary of recent quantum computing news:

  • IBM released a new API and upgraded simulator for modeling circuits up to 20 qubits on its 5-qubit platform. It also announced plans for a software developer kit by mid-year for building “simple” quantum applications. So far, says IBM, its quantum cloud has attracted about 40,000 users, including, for example, the Massachusetts Institute of Technology, which used the cloud service for its online quantum information science course. IBM also noted heavy use of the service by Chinese researchers. (See HPCwire coverage, IBM Touts Hybrid Approach to Quantum Computing)
  • D-Wave has been actively extending its development ecosystem (qbsolv (D-wave) and qmasm (LANL, et al.) and says researchers have recently been able to simulate a 20,000 qubit system on 1,000-qubit machine using qbsolv (more below). After announcing a 2,000-quibit machine in the fall, the company has begun deploying them. The first will be for a new customer, Temporal Defense System, and another is planned for the Google/NASA/USRA partnership which has a 1,000-qubit machine now. D-wave also just announced Virginia Tech and the Hume Center will begin using D-Wave systems for work on defense and intelligence applications.
  • Google’s commentary declares: “We anticipate that, within a few years, well-controlled quantum systems may be able to perform certain tasks much faster than conventional computers based on CMOS (complementary metal oxide–semiconductor) technology. Here we highlight three commercially viable uses for early quantum-computing devices: quantum simulation, quantum-assisted optimization and quantum sampling. Faster computing speeds in these areas would be commercially advantageous in sectors from artificial intelligence to finance and health care.”
D-Wave 2000Q System

Clearly there is a lot going on even at this stage of quantum computing’s development. There’s also been a good deal of wrangling over just what is a quantum computer and the differences between IBM’s “universal” digital approach – essentially a machine able to do anything computers do now – and D-Wave’s adiabatic annealing approach, which is currently intended to solve specific classes of optimization problems.

“They are different kinds of machines. No one has a universal quantum computer now, so you have to look at each case individually for its particular strengths and weaknesses,” explained Martinis to HPCwire. “The D-wave has minimal quantum coherence (it loses the information exchanged between qubits quite quickly), but makes up for it by having many qubits.”

“The IBM machine is small, but the qubits have quantum coherence enough to do some standard quantum algorithms. Right now it is not powerful, as you can run quantum simulations on classical computers quite easily. But by adding qubits the power will scale up quickly. It has the architecture of a universal machine and has enough quantum coherence to behave like one for very small problems,” Martinis said.

Noteworthy, Google has developed 9-qubit devices that have 3-5x more coherence than IBM, according to Martinis, but they are not on the cloud yet. “We are ready to scale up now, and plan to have this year a ‘quantum supremacy’ device that has to be checked with a supercomputer. We are thinking of offering cloud also, but are more or less waiting until we have a hardware device that gives you more power than a classical simulation.”

Quantum supremacy as described in the Google commentary is a term coined by theoretical physicist John Preskill to describe “the ability of a quantum processor to perform, in a short time, a well-defined mathematical task that even the largest classical supercomputers (such as China’s Sunway TaihuLight) would be unable to complete within any reasonable time frame. We predict that, in a few years, an experiment achieving quantum supremacy will be performed.”

Bo Ewald

For the moment, D-Wave is the only vendor offering near-production machines versus research machines, said Bo Ewald, the company’s ever-cheerful evangelist. He quickly agrees though that at least for now there aren’t any production-ready applications. Developing a quantum tool/software ecosystem is a driving focus at D-wave. The LANL app dev work, though impressive, still represents proto-application development. Nevertheless the ecosystem of tools is growing quickly.

“We have defined a software architecture that has several layers starting at the quantum machine instruction layer where if you want to program in machine language you are certainly welcome to do that; that is kind of the way people had to do it in the early days,” said Ewald.

“The next layer up is if you want to be able to create quantum machine instructions from C or C++ or Python. We have now libraries that run on host machines, regular HPC machines, so you can use those languages to generate programs that run on the D-Wave machine but the challenge that we have faced, that customers have faced, is that our machines had 500 qubits or 1,000 qubits and now 2,000; we know there are problems that are going to consume many more qubits than that,” he said.

For D-Wave systems, qbsolv helps address this problem. It allows a meta-description of the machine and the problem you want to solve as quadratic unconstrained binary optimization or QUBO. It’s an intermediate representation. D-Wave then extended this capability to what it calls virtual QUBOs likening it to virtual memory.

“You can create QUBOs or representations of problems which are much larger than the machine itself and then using combined classical computer and quantum computer techniques we could partition the problem and solve them in chunks and then kind of glue them back together after we solved the D-Wave part. We’ve done that now with the 1,000-qubit machine and run problems that have the equivalent of 20,000 qubits,” said Ewald, adding the new 2,000-qubit machines will handle problems of even greater size using this capability.

At LANL, researcher Scott Pakin has developed another tool – a quantum macro assembler for D-Wave systems (QMASM). Ewald said part of the goal of Pakin’s work was to determine, “if you could map gates onto the machine even though we are not a universal or a gate model. You can in fact model gates on our machine and he has started to [create] a library of gates (or gates, and gates, nand gates) and you can assemble those to become macros.”

Pakin said,My personal research interest has been in making the D-Wave easier to program. I’ve recently built something really nifty on top of QMASM: edif2qmasm, which is my answer to the question: Can one write classical-style code and run it on the D-Wave?

“For many difficult computational problems, solution verification is simple and fast. The idea behind edif2qmasm is that one can write an ordinary(-ish) program that reports if a proposed solution to a problem is in fact valid. This gets compiled for the D-Wave then run _backwards_, giving it ‘true’ for the proposed solution being valid and getting back a solution to the difficult computational problem.”

Pakin noted there are many examples on github to provide a feel for the power of this tool.

“For example, mult.v is a simple, one-line multiplier. Run it backwards, and it factors a number, which underlies modern data decryption. In a dozen or so lines of code, circsat.v evaluates a Boolean circuit. Run it backwards, and it tells you what inputs lead to an output of “true”, which used in areas of artificial intelligence, circuit design, and automatic theorem proving. map-color.v reports if a map is correctly colored with four colors such that no two adjacent regions have the same color. Run it backwards, and it _finds_ such a coloring.

“Although current-generation D-Wave systems are too limited to apply this approach to substantial problems, the trends in system scale and engineering precision indicate that some day we should be able to perform real work on this sort of system. And with the help of tools like edif2qmasm, programmers won’t need an advanced degree to figure out how to write code for it,” he explained.

The D-Wave/VW collaboration, just a year or so old, is one of the more interesting quantum computing proof-of-concept efforts because it tackles an optimization problem of the kind that is widespread in everyday life. As described by Ewald, VW CIO Martin Hoffman was making his yearly swing through Silicon Valley and stopped in at D-Wave and talk turned to the many optimization challenges big automakers face, such as supply logistics, vehicle delivery, and various machine learning tasks and doing a D-Wave project around one of them. Instead, said Ewald, VW eventually settled on a more driver-facing problem.

It turns out there are about 10,000 taxis in Beijing, said Ewald. Each has a GPS device and their positions are recorded every five seconds. Traffic congestion, of course, is a huge problem in Beijing. The idea was to explore if it was possible to create an application running on both traditional computer resources and D-Wave to help monitor and guide taxi movement more quickly and effectively.

“Ten thousand taxis on all of the streets in Beijing is way too big for our machine at this point, but they came to this same idea we talked about with qbsolve where you partition problems,” said Ewald. “On the traditional machines VW created a map and grid and subdivided the grid into quadrants and would find the quadrant that was the most red.” That’s red as in long cab waits.

The problem quadrant was then sent to D-Wave to be solved. “We would optimize the flow, basically minimize the wait time for all of the taxis within the quadrant, send that [solution] back to the traditional machine which would then send us the next most red, and we would try to turn it green,” said Ewald.

According to Ewald, VW was able to relatively create the “hybrid” solutions quickly and “get what they say are pretty good results.” They have talked about then being able to extend this project to predict where traffic jams are going to be and give people perhaps 45 minute warnings that there’s the potential for a traffic jam at such and such intersection. The two companies have a press conference planned this week at CeBIT to showcase the project.

It’s good to emphasize that the VW/D-wave exercise is developmental – what Ewald labels as a proto application: “But just the fact that they were able to get it running is a great step forward in many ways in that we believe our machine will be used side by side with existing machines, much like GPUs were used in the early days on graphics. In this case VW has demonstrated quite clearly how our machine, our QPU if you will, can be used in helping accelerate the work being done on a traditional HPC machines.”

Image art, chip diagram: D-Wave

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Dark Matter, Arrhythmia, Sustainability & More

February 28, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Microsoft Announces General Availability of AMD-backed Azure HBv2 Instances for HPC

February 27, 2020

Nearly seven months after they were first announced, Microsoft Azure’s HPC-targeted HBv2 virtual machines (VMs) based on AMD second-generation Epyc processors are ready for primetime. The new VMs, which Azure claims of Read more…

By Staff report

Sequoia Decommissioned, Making Room for El Capitan

February 27, 2020

After eight years of service, Sequoia has been felled. Once the most powerful publicly ranked supercomputer in the world, Sequoia – hosted by Lawrence Livermore National Laboratory (LLNL) – has been decommissioned to Read more…

By Oliver Peckham

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Blue Waters Supercomputer Helps Tackle Pandemic Flu Simulations

February 26, 2020

While not the novel coronavirus that is now sweeping across the world, the 2009 H1N1 flu pandemic (pH1N1) infected up to 21 percent of the global population and killed over 200,000 people. Now, a team of researchers from Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Micron Accelerator Bumps Up Memory Bandwidth

February 26, 2020

Deep learning accelerators based on chip architectures coupled with high-bandwidth memory are emerging to enable near real-time processing of machine learning algorithms. Memory chip specialist Micron Technology argues t Read more…

By George Leopold

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

NOAA Lays Out Aggressive New AI Strategy

February 24, 2020

Roughly coincident with last week’s announcement of a planned tripling of its compute capacity, the National Oceanic and Atmospheric Administration issued an Read more…

By John Russell

New Supercomputer Cooling Method Saves Half-Million Gallons of Water at Sandia National Laboratories

February 24, 2020

A new cooling method for supercomputer systems is picking up steam – literally. After saving millions of gallons of water at a National Renewable Energy Laboratory (NREL) datacenter, this innovative approach, called... Read more…

By Oliver Peckham

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This