HPC Compiler Company PathScale Seeks Life Raft

By Tiffany Trader

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. A letter from the company with a listing of assets is included at the end of the article.

PathScale represents one of handful of compiler technologies that are designed for high performance computing, and it is one the last independent HPC compiler companies. In an interview with HPCwire, PathScale Chief Technology Officer and owner Christopher Bergström attributes the company’s financial insolvency to its heavy involvement in Intel alternative architectures.

“Unfortunately in recent years, we bet big on ARMv8 and the partner ecosystem and the hardware has been extremely disappointing,” said Bergström. “Once partners saw how low their hardware performed on HPC workloads they decided to pull back on their investment in HPC software.”

Due to confidentiality agreements, he’s limited to speaking in generalities but argues that the currently available ARMv8 processors deliver very weak performance for HPC workloads.

“ARM is possibly aware of this issue and as a result has introduced SVE (Scalable Vector Extensions),” Bergström told us. “Unfortunately, they focused more on the portability side of vectorization and the jury is still out if they can deliver competitive performance. SVE’s flexible design and freedom to change vector width on the fly will possibly impact the ability to write code tuned specifically for a target processor. In addition, design of the hardware architecture blocks software optimizations that are very common and potentially critical for HPC. And based on the publicly available roadmaps, the floating point to power ratio is not where it needs to be for HPC workloads in order to effectively compete against Intel or GPUs.”

Before coming to these conclusions, PathScale had a statement of work contract with Cavium to help support optimizing compilers for their ThunderX processors. When that funding was pulled, PathScale also lost their ability to gain and support customers for ARMv8. They looked for funders, and had conversations with stakeholders in the private and public sphere, but the money just wasn’t available.

“Show me a company in the HPC space wanting to invest,” said Bergström, “They’re not investing in compiler technology.”

ARM, which was scooped up by Japanese company SoftBank in September 2016 for $31 billion, may be the exception, but according to Bergström the PathScale technology, while it significantly leverages LLVM, doesn’t perfectly align with what they need.

Bergström brokered the deal with Cray that resurrected PathScale from the ashes of SiCortex in 2009 (more on this below) and he’s proud of what he and his team have accomplished over the last seven years. “We love compilers, we love the technology. We want to continue developing this stuff. The team is rock solid, we’re like family. We live eat and breathe compilers, but we’re not on a sustainable business path and we need a bailout or help refocusing. We need people who understand that these kind of technologies add value and LLVM by itself isn’t a panacea.”

Addison Snell, CEO of HPC analyst firm Intersect360 Research, shared some additional perspective on the market dynamics at play for independent tools vendors. “In the Beowulf era, clusters were all mostly the same, so what little differentiation there was came from things like development environments and job management software,” he said. “Independent middleware companies of all types flourished. Now we’re trending back toward an era of architectural specialization. Users are shopping for architectures more than they’re shopping for which compiler to use for a given architecture, and acquisitions have locked up some of the previously dominant players. Vendors’ solutions will have their own integrated stacks. Free open-source versions might still exist, but there will be less room for independent middleware players.”

PathScale has a winding history that dates back to 2001 with the founding of Key Research by Lawrence Livermore alum Tom McWilliams. The company was riding the commodity cluster wave, developing clustered Linux server solutions based on a low-cost 64-bit design. In 2003, contemporaneous with the rising popularity of AMD Opteron processors, Key Research rebranded as PathScale and expanded its product line to include high-performance computing adapters and 64-bit compilers.

PathScale would then pass through a number of corporate hands. In 2006, QLogic acquired PathScale, primarily to gain access to its InfiniBand interconnect technology. The following year, the compiler assets were sold to SiCortex, which sought a solution for its MIPS-based HPC systems.

When SiCortex closed its doors in 2009, Cray bought the PathScale assets and revived the company. Under an arrangement struck with Cray, PathScale would go forward as an independent technology group with an option to buy. In March 2012, PathScale CTO Christopher Bergström acquired all assets and became the sole owner of PathScale Inc.

The PathScale toolchain currently generates code for the latest Intel processors, AMD64, AMD GPUs, Power8, ARMv8, and NVIDIA GPUs in combination with both Power8 and x86.

In a message to the community, Pathscale writes:

We are evaluating all options to overcome this difficult time, including refocusing to provide training and code porting services instead of purely offering compiler licenses and optimization services. Our team deeply understands parallel programming and whether you have crazy C++ or ancient Fortran, we can likely help get it running on GPUs (NVIDIA or AMD) or vectorization targets (like Xeon Phi).

All PathScale engineers would love to continue to work on the compiler as an independent company, but we need the community to help us. We need people who believe in our technical roadmap. We need people who understand the future exascale computing software stack will likely be complex, but that complexity and advanced optimizations will make it easier for end users. At the same time we must be realistic and without immediate assistance start accepting any reasonable offer on the assets as a whole or piece by piece.

Our assets include:

  • PathScale website, trademarks and branding

  • C, C++ and Fortran compilers

  • Complete GPGPU and many-core runtime which supports OMP4 and OpenACC and is portable across multiple architectures (NVIDIA GPU, ARMv8, Power8+NVIDIA and AMD GPU)

  • Significant modifications to CLANG and LLVM to enable support for OpenACC and OpenMP and parallel programming models.

  • Complete engineering team with expertise working on CLANG and LLVM and MIPSPro.

  • Advertising credits with popular websites ($30,000)

A purchase or funding from crowdsourcing or other community event will keep a highly optimizing OpenMP and OpenACC C/C++ and Fortran compiler toolchain plus experienced development team in operation. Succinctly, PathScale preserves architectural diversity and opens the door for competition with a performant compiler for interesting architectures with OpenMP and OpenACC parallelization.

If interested please contact funding@pathscale.com.


Editor’s note: HPCwire has reached out to Cavium and ARM and we will update the article with any responses we receive.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire