Data-Hungry Algorithms and the Thirst for AI

By Tiffany Trader

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.”

Trends around big computing and big data are converging in powerful ways, including the Internet of Things (IoT), artificial intelligence (AI) and deep learning. Innovating and competing is now about big, scalable computing and big, fast data analytics – and “those with the tools and talent will reap the big rewards,” Boisseau expressed.

Prior to joining Dell EMC (then Dell Inc.) in 2014, Boisseau made his mark as the founding director of the Texas Advanced Computing Center (TACC). Under his leadership the site became a center of HPC innovation, a legacy that continues today under Director Dan Stanzione.

Jay Boisseau

“I’m an HPC person who’s fascinated by the possibilities of augmenting intelligence with deep learning techniques; I’ve drunk the ‘deep learning Kool-Aid,’” Boisseau told the crowd of advanced computing professionals.

AI as a field goes back to the 50s, Boisseau noted, but the current proliferation of deep learning using deep neural networks has been made possible by three advances: “One is that we actually have big data; these deep learning algorithms are data hungry. Whereas we sometimes lament the growth of our data sizes, these deep neural networks are useless on small data. Use other techniques if you have small data, but if you have massive data and you want to draw insights that you’re not even sure how to formulate the hypothesis ahead of time, these neural network based methods can be really really powerful.

“Parallelizing the deep learning algorithms was another one of the advances, and having sufficiently powerful processors is another one,” Boisseau said.

AI, big data, cloud and deep learning are all intertwined and they are driving rapid expansion of the market for HPC-class hardware. Boisseau mines for correlations with the aid of Google Trends; the fun-to-play-with Google tool elucidates the contemporaneous rise of big data, deep learning, and IoT. Boisseau goes a step a further showing how Nvidia stock floats up on these tech trends.

The narrow point here is that deep learning/big data is an engine for GPU sales; the larger point is that these multiple related trends are driving silicon specialization and impacting market dynamics. As Boisseau points out, we’re only at the beginning of this trend cluster and we’re seeing silicon developed specifically for AI workloads as hardware vendors compete to establish themselves as the incumbent in this emerging field.

Another deep learning champion Nvidia CEO Jen Hsun Huang refers to machine learning as HPC’s consumer first killer app. When Nvidia’s CUDA-based ecosystem for HPC application acceleration launched in 2006, it kick started an era of heterogeneity in HPC (we’ll give the IBM-Sony Cell BE processor some cred here too even if the processor design was an evolutionary dead end). Fast forward to 2013-2014 and the emerging deep learning community found a friend in GPUs. With Nvidia, they could get their foot in the DL door with an economical gaming board and work their way up the chain to server-class Tesla GPUs, for max bandwidth and FLOPS.

Optimizations for single-precision (32-bit) processing, and support for half-precision (16-bit) on Nvidia’s newer GPUs, translates into faster computation for most AI workloads, which unlike many traditional HPC applications do not require full 64-bit precision. Intel is incorporating variable precision compute into its next-gen Phi product, the Knights Mill processor (due out this year).

Boisseau observed that starting about two decades ago HPC began the swing towards commodity architectures, with the invention of commodity-grade Beowulf clusters by Thomas Sterling in 1994. Benefiting from PC-based economies of scale, these x86 server-based Linux clusters became the dominant architecture in HPC. In turn, this spurred the movement toward broader enterprise adoption of HPC.

Although Xeon-flavored x86 is something of a de facto standard in HPC (with > 90 percent share), the pendulum appears headed back toward greater specialization and greater “disaggregation of technology,” to use a phrase offered by industry analyst Addison Snell (CEO, Intersect360 Research). Examples include IBM’s OpenPower systems; GPU-accelerated computing (and Power+GPU); ARM (now in server variants with HPC optimizations); AMD’s Zen/Ryzen CPU; and Intel’s Xeon Phi line (also its Altera FPGAs and imminent Xeon Skylake).

A major driver of all this: a gathering profusion of data.

“In short, HPC may be getting diverse again, but much of the forcing function is big data,” Boisseau observed. “Very simply, we used to have no digital data, then a trickle, but the ubiquity of computers, mobile devices, sensors, instruments and user/producers has produced an avalanche of data.”

Buzz terminology aside, big data is a fact of life now, “a forever reality” and those who can use big data effectively (or just “data” if the “big” tag drops off), will be in a position to out-compete, Boisseau added.

When data is your pinnacle directive and prime advantage, opportunity accrues to whoever holds the data, and that would be the hyperscalers, said Boisseau. Google, Facebook, Amazon, et al. are investing heavily in AI, amassing AI-friendly hardware like GPUs but also innovating ahead with even more efficient AI hardware (e.g., Tensor Processing Units at Google, FPGAs at Microsoft). On the tool side are about a dozen popular frameworks; TensorFlow (Google), mxnet (Amazon), and CNTK (Microsoft) among them.

Tech giants are advancing quickly too with AI strategies, Boisseau noted. Intel has made a quick succession of acquisitions (Nervana, Movidius, Saffron, MobilEye); IBM’s got its acquisition-enhanced Watson; Apple bought Turi.

“You [also] have companies like GraphCore, Wave Computing, and KnuPath that are designing special silicon with lower precision and higher performance,” said Boisseau. “There was a fourth one, Nervana, and Intel liked that company so much they bought it. So there were at least four companies making silicon dedicated to deep learning. I’m really eager to see if Nvidia – and I don’t have inside knowledge on this – further optimizes their technology for deep learning and removes some of the circuitry that’s still heritage graphics oriented as well as how the special silicon providers do competing against Intel and Nvidia as well as how Intel’s Nervana shapes up.”

Adding to the cloud/hyperscaler mix is the quickly expanding world of IoT, which is driving big data. The Internet of Things is enabling companies to operate more efficiently; it’s facilitating smart buildings, smart manufacturing, and smart products, said Boisseau. But as the spate of high-profile DDoS attacks attest, there’s a troubling security gap. The biggest challenge for IoT is “security, security, security,” Boisseau emphasized.

Another top-level point Boisseau made is that over half of HPC systems are now sold to industry, notably across manufacturing, financial services, life sciences, energy, EDA, weather and digital content creation. “Big computing is now as fundamental to many industries as it is in research,” Boisseau said. Half of the high performance computing TAM (total addressable market), estimated at nearly $30 billion, is now in enterprise/industry, and there’s still a lot of untapped potential, in Boisseau’s opinion.

Market projections for AI are even steeper. Research houses are predicting that AI will grow to tens of billions of dollars a year (IDC predicts a surge past $4 billion in 2020; IBM expects market to be $2 trillion over next decade; Tractica plots $36.8 billion in revenue by 2025).

Boisseau is confident that the world needs big data AND deep learning, citing the following reasons/scenarios:

  • Innovation requires ever more capability: to design, engineer, manufacture, distribute, market and produce new/better products and services.
  • Modeling and simulation enable design, in accordance with physics/natural laws, and virtual engineering, manufacturing, testing.
  • Machine learning and deep learning enable discovery and innovation
    • When laws of nature don’t apply (social media, sentiment, etc.) or are non-linear/difficult to simulate accurately over time (e.g. weather forecasting).
    • That may be quicker and/or less costly depending on simulation scale, complexity versus data completeness.

“When we understand the laws of nature, when we understand the equations, it gives us an ability to model and simulate highly accurately,” said Boisseau. “But for crash simulations, we still don’t want to drive a car that’s designed with data analysis; we need modeling and simulation to truly understand structural dynamics and fluid flow and even then data analysis can be used in the interpretation.

“There will be times where data mining over all those crash simulations adds to the modeling and simulation accuracy. So modeling and simulation will always remain important, at least as long as the universe is governed by visible laws, especially in virtual engineering and manufacturing testing, but machine learning and deep learning enable discovery in other ways, especially when the laws of nature don’t apply.”

“If you’ve adopted HPC great, but deep learning is next,” Boisseau told the audience. “It might not be next year for some of you, it might be two years, five years, but I suspect it’s sooner than you think.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This