Data-Hungry Algorithms and the Thirst for AI

By Tiffany Trader

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.”

Trends around big computing and big data are converging in powerful ways, including the Internet of Things (IoT), artificial intelligence (AI) and deep learning. Innovating and competing is now about big, scalable computing and big, fast data analytics – and “those with the tools and talent will reap the big rewards,” Boisseau expressed.

Prior to joining Dell EMC (then Dell Inc.) in 2014, Boisseau made his mark as the founding director of the Texas Advanced Computing Center (TACC). Under his leadership the site became a center of HPC innovation, a legacy that continues today under Director Dan Stanzione.

Jay Boisseau

“I’m an HPC person who’s fascinated by the possibilities of augmenting intelligence with deep learning techniques; I’ve drunk the ‘deep learning Kool-Aid,’” Boisseau told the crowd of advanced computing professionals.

AI as a field goes back to the 50s, Boisseau noted, but the current proliferation of deep learning using deep neural networks has been made possible by three advances: “One is that we actually have big data; these deep learning algorithms are data hungry. Whereas we sometimes lament the growth of our data sizes, these deep neural networks are useless on small data. Use other techniques if you have small data, but if you have massive data and you want to draw insights that you’re not even sure how to formulate the hypothesis ahead of time, these neural network based methods can be really really powerful.

“Parallelizing the deep learning algorithms was another one of the advances, and having sufficiently powerful processors is another one,” Boisseau said.

AI, big data, cloud and deep learning are all intertwined and they are driving rapid expansion of the market for HPC-class hardware. Boisseau mines for correlations with the aid of Google Trends; the fun-to-play-with Google tool elucidates the contemporaneous rise of big data, deep learning, and IoT. Boisseau goes a step a further showing how Nvidia stock floats up on these tech trends.

The narrow point here is that deep learning/big data is an engine for GPU sales; the larger point is that these multiple related trends are driving silicon specialization and impacting market dynamics. As Boisseau points out, we’re only at the beginning of this trend cluster and we’re seeing silicon developed specifically for AI workloads as hardware vendors compete to establish themselves as the incumbent in this emerging field.

Another deep learning champion Nvidia CEO Jen Hsun Huang refers to machine learning as HPC’s consumer first killer app. When Nvidia’s CUDA-based ecosystem for HPC application acceleration launched in 2006, it kick started an era of heterogeneity in HPC (we’ll give the IBM-Sony Cell BE processor some cred here too even if the processor design was an evolutionary dead end). Fast forward to 2013-2014 and the emerging deep learning community found a friend in GPUs. With Nvidia, they could get their foot in the DL door with an economical gaming board and work their way up the chain to server-class Tesla GPUs, for max bandwidth and FLOPS.

Optimizations for single-precision (32-bit) processing, and support for half-precision (16-bit) on Nvidia’s newer GPUs, translates into faster computation for most AI workloads, which unlike many traditional HPC applications do not require full 64-bit precision. Intel is incorporating variable precision compute into its next-gen Phi product, the Knights Mill processor (due out this year).

Boisseau observed that starting about two decades ago HPC began the swing towards commodity architectures, with the invention of commodity-grade Beowulf clusters by Thomas Sterling in 1994. Benefiting from PC-based economies of scale, these x86 server-based Linux clusters became the dominant architecture in HPC. In turn, this spurred the movement toward broader enterprise adoption of HPC.

Although Xeon-flavored x86 is something of a de facto standard in HPC (with > 90 percent share), the pendulum appears headed back toward greater specialization and greater “disaggregation of technology,” to use a phrase offered by industry analyst Addison Snell (CEO, Intersect360 Research). Examples include IBM’s OpenPower systems; GPU-accelerated computing (and Power+GPU); ARM (now in server variants with HPC optimizations); AMD’s Zen/Ryzen CPU; and Intel’s Xeon Phi line (also its Altera FPGAs and imminent Xeon Skylake).

A major driver of all this: a gathering profusion of data.

“In short, HPC may be getting diverse again, but much of the forcing function is big data,” Boisseau observed. “Very simply, we used to have no digital data, then a trickle, but the ubiquity of computers, mobile devices, sensors, instruments and user/producers has produced an avalanche of data.”

Buzz terminology aside, big data is a fact of life now, “a forever reality” and those who can use big data effectively (or just “data” if the “big” tag drops off), will be in a position to out-compete, Boisseau added.

When data is your pinnacle directive and prime advantage, opportunity accrues to whoever holds the data, and that would be the hyperscalers, said Boisseau. Google, Facebook, Amazon, et al. are investing heavily in AI, amassing AI-friendly hardware like GPUs but also innovating ahead with even more efficient AI hardware (e.g., Tensor Processing Units at Google, FPGAs at Microsoft). On the tool side are about a dozen popular frameworks; TensorFlow (Google), mxnet (Amazon), and CNTK (Microsoft) among them.

Tech giants are advancing quickly too with AI strategies, Boisseau noted. Intel has made a quick succession of acquisitions (Nervana, Movidius, Saffron, MobilEye); IBM’s got its acquisition-enhanced Watson; Apple bought Turi.

“You [also] have companies like GraphCore, Wave Computing, and KnuPath that are designing special silicon with lower precision and higher performance,” said Boisseau. “There was a fourth one, Nervana, and Intel liked that company so much they bought it. So there were at least four companies making silicon dedicated to deep learning. I’m really eager to see if Nvidia – and I don’t have inside knowledge on this – further optimizes their technology for deep learning and removes some of the circuitry that’s still heritage graphics oriented as well as how the special silicon providers do competing against Intel and Nvidia as well as how Intel’s Nervana shapes up.”

Adding to the cloud/hyperscaler mix is the quickly expanding world of IoT, which is driving big data. The Internet of Things is enabling companies to operate more efficiently; it’s facilitating smart buildings, smart manufacturing, and smart products, said Boisseau. But as the spate of high-profile DDoS attacks attest, there’s a troubling security gap. The biggest challenge for IoT is “security, security, security,” Boisseau emphasized.

Another top-level point Boisseau made is that over half of HPC systems are now sold to industry, notably across manufacturing, financial services, life sciences, energy, EDA, weather and digital content creation. “Big computing is now as fundamental to many industries as it is in research,” Boisseau said. Half of the high performance computing TAM (total addressable market), estimated at nearly $30 billion, is now in enterprise/industry, and there’s still a lot of untapped potential, in Boisseau’s opinion.

Market projections for AI are even steeper. Research houses are predicting that AI will grow to tens of billions of dollars a year (IDC predicts a surge past $4 billion in 2020; IBM expects market to be $2 trillion over next decade; Tractica plots $36.8 billion in revenue by 2025).

Boisseau is confident that the world needs big data AND deep learning, citing the following reasons/scenarios:

  • Innovation requires ever more capability: to design, engineer, manufacture, distribute, market and produce new/better products and services.
  • Modeling and simulation enable design, in accordance with physics/natural laws, and virtual engineering, manufacturing, testing.
  • Machine learning and deep learning enable discovery and innovation
    • When laws of nature don’t apply (social media, sentiment, etc.) or are non-linear/difficult to simulate accurately over time (e.g. weather forecasting).
    • That may be quicker and/or less costly depending on simulation scale, complexity versus data completeness.

“When we understand the laws of nature, when we understand the equations, it gives us an ability to model and simulate highly accurately,” said Boisseau. “But for crash simulations, we still don’t want to drive a car that’s designed with data analysis; we need modeling and simulation to truly understand structural dynamics and fluid flow and even then data analysis can be used in the interpretation.

“There will be times where data mining over all those crash simulations adds to the modeling and simulation accuracy. So modeling and simulation will always remain important, at least as long as the universe is governed by visible laws, especially in virtual engineering and manufacturing testing, but machine learning and deep learning enable discovery in other ways, especially when the laws of nature don’t apply.”

“If you’ve adopted HPC great, but deep learning is next,” Boisseau told the audience. “It might not be next year for some of you, it might be two years, five years, but I suspect it’s sooner than you think.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This