Data-Hungry Algorithms and the Thirst for AI

By Tiffany Trader

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.”

Trends around big computing and big data are converging in powerful ways, including the Internet of Things (IoT), artificial intelligence (AI) and deep learning. Innovating and competing is now about big, scalable computing and big, fast data analytics – and “those with the tools and talent will reap the big rewards,” Boisseau expressed.

Prior to joining Dell EMC (then Dell Inc.) in 2014, Boisseau made his mark as the founding director of the Texas Advanced Computing Center (TACC). Under his leadership the site became a center of HPC innovation, a legacy that continues today under Director Dan Stanzione.

Jay Boisseau

“I’m an HPC person who’s fascinated by the possibilities of augmenting intelligence with deep learning techniques; I’ve drunk the ‘deep learning Kool-Aid,’” Boisseau told the crowd of advanced computing professionals.

AI as a field goes back to the 50s, Boisseau noted, but the current proliferation of deep learning using deep neural networks has been made possible by three advances: “One is that we actually have big data; these deep learning algorithms are data hungry. Whereas we sometimes lament the growth of our data sizes, these deep neural networks are useless on small data. Use other techniques if you have small data, but if you have massive data and you want to draw insights that you’re not even sure how to formulate the hypothesis ahead of time, these neural network based methods can be really really powerful.

“Parallelizing the deep learning algorithms was another one of the advances, and having sufficiently powerful processors is another one,” Boisseau said.

AI, big data, cloud and deep learning are all intertwined and they are driving rapid expansion of the market for HPC-class hardware. Boisseau mines for correlations with the aid of Google Trends; the fun-to-play-with Google tool elucidates the contemporaneous rise of big data, deep learning, and IoT. Boisseau goes a step a further showing how Nvidia stock floats up on these tech trends.

The narrow point here is that deep learning/big data is an engine for GPU sales; the larger point is that these multiple related trends are driving silicon specialization and impacting market dynamics. As Boisseau points out, we’re only at the beginning of this trend cluster and we’re seeing silicon developed specifically for AI workloads as hardware vendors compete to establish themselves as the incumbent in this emerging field.

Another deep learning champion Nvidia CEO Jen Hsun Huang refers to machine learning as HPC’s consumer first killer app. When Nvidia’s CUDA-based ecosystem for HPC application acceleration launched in 2006, it kick started an era of heterogeneity in HPC (we’ll give the IBM-Sony Cell BE processor some cred here too even if the processor design was an evolutionary dead end). Fast forward to 2013-2014 and the emerging deep learning community found a friend in GPUs. With Nvidia, they could get their foot in the DL door with an economical gaming board and work their way up the chain to server-class Tesla GPUs, for max bandwidth and FLOPS.

Optimizations for single-precision (32-bit) processing, and support for half-precision (16-bit) on Nvidia’s newer GPUs, translates into faster computation for most AI workloads, which unlike many traditional HPC applications do not require full 64-bit precision. Intel is incorporating variable precision compute into its next-gen Phi product, the Knights Mill processor (due out this year).

Boisseau observed that starting about two decades ago HPC began the swing towards commodity architectures, with the invention of commodity-grade Beowulf clusters by Thomas Sterling in 1994. Benefiting from PC-based economies of scale, these x86 server-based Linux clusters became the dominant architecture in HPC. In turn, this spurred the movement toward broader enterprise adoption of HPC.

Although Xeon-flavored x86 is something of a de facto standard in HPC (with > 90 percent share), the pendulum appears headed back toward greater specialization and greater “disaggregation of technology,” to use a phrase offered by industry analyst Addison Snell (CEO, Intersect360 Research). Examples include IBM’s OpenPower systems; GPU-accelerated computing (and Power+GPU); ARM (now in server variants with HPC optimizations); AMD’s Zen/Ryzen CPU; and Intel’s Xeon Phi line (also its Altera FPGAs and imminent Xeon Skylake).

A major driver of all this: a gathering profusion of data.

“In short, HPC may be getting diverse again, but much of the forcing function is big data,” Boisseau observed. “Very simply, we used to have no digital data, then a trickle, but the ubiquity of computers, mobile devices, sensors, instruments and user/producers has produced an avalanche of data.”

Buzz terminology aside, big data is a fact of life now, “a forever reality” and those who can use big data effectively (or just “data” if the “big” tag drops off), will be in a position to out-compete, Boisseau added.

When data is your pinnacle directive and prime advantage, opportunity accrues to whoever holds the data, and that would be the hyperscalers, said Boisseau. Google, Facebook, Amazon, et al. are investing heavily in AI, amassing AI-friendly hardware like GPUs but also innovating ahead with even more efficient AI hardware (e.g., Tensor Processing Units at Google, FPGAs at Microsoft). On the tool side are about a dozen popular frameworks; TensorFlow (Google), mxnet (Amazon), and CNTK (Microsoft) among them.

Tech giants are advancing quickly too with AI strategies, Boisseau noted. Intel has made a quick succession of acquisitions (Nervana, Movidius, Saffron, MobilEye); IBM’s got its acquisition-enhanced Watson; Apple bought Turi.

“You [also] have companies like GraphCore, Wave Computing, and KnuPath that are designing special silicon with lower precision and higher performance,” said Boisseau. “There was a fourth one, Nervana, and Intel liked that company so much they bought it. So there were at least four companies making silicon dedicated to deep learning. I’m really eager to see if Nvidia – and I don’t have inside knowledge on this – further optimizes their technology for deep learning and removes some of the circuitry that’s still heritage graphics oriented as well as how the special silicon providers do competing against Intel and Nvidia as well as how Intel’s Nervana shapes up.”

Adding to the cloud/hyperscaler mix is the quickly expanding world of IoT, which is driving big data. The Internet of Things is enabling companies to operate more efficiently; it’s facilitating smart buildings, smart manufacturing, and smart products, said Boisseau. But as the spate of high-profile DDoS attacks attest, there’s a troubling security gap. The biggest challenge for IoT is “security, security, security,” Boisseau emphasized.

Another top-level point Boisseau made is that over half of HPC systems are now sold to industry, notably across manufacturing, financial services, life sciences, energy, EDA, weather and digital content creation. “Big computing is now as fundamental to many industries as it is in research,” Boisseau said. Half of the high performance computing TAM (total addressable market), estimated at nearly $30 billion, is now in enterprise/industry, and there’s still a lot of untapped potential, in Boisseau’s opinion.

Market projections for AI are even steeper. Research houses are predicting that AI will grow to tens of billions of dollars a year (IDC predicts a surge past $4 billion in 2020; IBM expects market to be $2 trillion over next decade; Tractica plots $36.8 billion in revenue by 2025).

Boisseau is confident that the world needs big data AND deep learning, citing the following reasons/scenarios:

  • Innovation requires ever more capability: to design, engineer, manufacture, distribute, market and produce new/better products and services.
  • Modeling and simulation enable design, in accordance with physics/natural laws, and virtual engineering, manufacturing, testing.
  • Machine learning and deep learning enable discovery and innovation
    • When laws of nature don’t apply (social media, sentiment, etc.) or are non-linear/difficult to simulate accurately over time (e.g. weather forecasting).
    • That may be quicker and/or less costly depending on simulation scale, complexity versus data completeness.

“When we understand the laws of nature, when we understand the equations, it gives us an ability to model and simulate highly accurately,” said Boisseau. “But for crash simulations, we still don’t want to drive a car that’s designed with data analysis; we need modeling and simulation to truly understand structural dynamics and fluid flow and even then data analysis can be used in the interpretation.

“There will be times where data mining over all those crash simulations adds to the modeling and simulation accuracy. So modeling and simulation will always remain important, at least as long as the universe is governed by visible laws, especially in virtual engineering and manufacturing testing, but machine learning and deep learning enable discovery in other ways, especially when the laws of nature don’t apply.”

“If you’ve adopted HPC great, but deep learning is next,” Boisseau told the audience. “It might not be next year for some of you, it might be two years, five years, but I suspect it’s sooner than you think.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This