Data-Hungry Algorithms and the Thirst for AI

By Tiffany Trader

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.”

Trends around big computing and big data are converging in powerful ways, including the Internet of Things (IoT), artificial intelligence (AI) and deep learning. Innovating and competing is now about big, scalable computing and big, fast data analytics – and “those with the tools and talent will reap the big rewards,” Boisseau expressed.

Prior to joining Dell EMC (then Dell Inc.) in 2014, Boisseau made his mark as the founding director of the Texas Advanced Computing Center (TACC). Under his leadership the site became a center of HPC innovation, a legacy that continues today under Director Dan Stanzione.

Jay Boisseau

“I’m an HPC person who’s fascinated by the possibilities of augmenting intelligence with deep learning techniques; I’ve drunk the ‘deep learning Kool-Aid,’” Boisseau told the crowd of advanced computing professionals.

AI as a field goes back to the 50s, Boisseau noted, but the current proliferation of deep learning using deep neural networks has been made possible by three advances: “One is that we actually have big data; these deep learning algorithms are data hungry. Whereas we sometimes lament the growth of our data sizes, these deep neural networks are useless on small data. Use other techniques if you have small data, but if you have massive data and you want to draw insights that you’re not even sure how to formulate the hypothesis ahead of time, these neural network based methods can be really really powerful.

“Parallelizing the deep learning algorithms was another one of the advances, and having sufficiently powerful processors is another one,” Boisseau said.

AI, big data, cloud and deep learning are all intertwined and they are driving rapid expansion of the market for HPC-class hardware. Boisseau mines for correlations with the aid of Google Trends; the fun-to-play-with Google tool elucidates the contemporaneous rise of big data, deep learning, and IoT. Boisseau goes a step a further showing how Nvidia stock floats up on these tech trends.

The narrow point here is that deep learning/big data is an engine for GPU sales; the larger point is that these multiple related trends are driving silicon specialization and impacting market dynamics. As Boisseau points out, we’re only at the beginning of this trend cluster and we’re seeing silicon developed specifically for AI workloads as hardware vendors compete to establish themselves as the incumbent in this emerging field.

Another deep learning champion Nvidia CEO Jen Hsun Huang refers to machine learning as HPC’s consumer first killer app. When Nvidia’s CUDA-based ecosystem for HPC application acceleration launched in 2006, it kick started an era of heterogeneity in HPC (we’ll give the IBM-Sony Cell BE processor some cred here too even if the processor design was an evolutionary dead end). Fast forward to 2013-2014 and the emerging deep learning community found a friend in GPUs. With Nvidia, they could get their foot in the DL door with an economical gaming board and work their way up the chain to server-class Tesla GPUs, for max bandwidth and FLOPS.

Optimizations for single-precision (32-bit) processing, and support for half-precision (16-bit) on Nvidia’s newer GPUs, translates into faster computation for most AI workloads, which unlike many traditional HPC applications do not require full 64-bit precision. Intel is incorporating variable precision compute into its next-gen Phi product, the Knights Mill processor (due out this year).

Boisseau observed that starting about two decades ago HPC began the swing towards commodity architectures, with the invention of commodity-grade Beowulf clusters by Thomas Sterling in 1994. Benefiting from PC-based economies of scale, these x86 server-based Linux clusters became the dominant architecture in HPC. In turn, this spurred the movement toward broader enterprise adoption of HPC.

Although Xeon-flavored x86 is something of a de facto standard in HPC (with > 90 percent share), the pendulum appears headed back toward greater specialization and greater “disaggregation of technology,” to use a phrase offered by industry analyst Addison Snell (CEO, Intersect360 Research). Examples include IBM’s OpenPower systems; GPU-accelerated computing (and Power+GPU); ARM (now in server variants with HPC optimizations); AMD’s Zen/Ryzen CPU; and Intel’s Xeon Phi line (also its Altera FPGAs and imminent Xeon Skylake).

A major driver of all this: a gathering profusion of data.

“In short, HPC may be getting diverse again, but much of the forcing function is big data,” Boisseau observed. “Very simply, we used to have no digital data, then a trickle, but the ubiquity of computers, mobile devices, sensors, instruments and user/producers has produced an avalanche of data.”

Buzz terminology aside, big data is a fact of life now, “a forever reality” and those who can use big data effectively (or just “data” if the “big” tag drops off), will be in a position to out-compete, Boisseau added.

When data is your pinnacle directive and prime advantage, opportunity accrues to whoever holds the data, and that would be the hyperscalers, said Boisseau. Google, Facebook, Amazon, et al. are investing heavily in AI, amassing AI-friendly hardware like GPUs but also innovating ahead with even more efficient AI hardware (e.g., Tensor Processing Units at Google, FPGAs at Microsoft). On the tool side are about a dozen popular frameworks; TensorFlow (Google), mxnet (Amazon), and CNTK (Microsoft) among them.

Tech giants are advancing quickly too with AI strategies, Boisseau noted. Intel has made a quick succession of acquisitions (Nervana, Movidius, Saffron, MobilEye); IBM’s got its acquisition-enhanced Watson; Apple bought Turi.

“You [also] have companies like GraphCore, Wave Computing, and KnuPath that are designing special silicon with lower precision and higher performance,” said Boisseau. “There was a fourth one, Nervana, and Intel liked that company so much they bought it. So there were at least four companies making silicon dedicated to deep learning. I’m really eager to see if Nvidia – and I don’t have inside knowledge on this – further optimizes their technology for deep learning and removes some of the circuitry that’s still heritage graphics oriented as well as how the special silicon providers do competing against Intel and Nvidia as well as how Intel’s Nervana shapes up.”

Adding to the cloud/hyperscaler mix is the quickly expanding world of IoT, which is driving big data. The Internet of Things is enabling companies to operate more efficiently; it’s facilitating smart buildings, smart manufacturing, and smart products, said Boisseau. But as the spate of high-profile DDoS attacks attest, there’s a troubling security gap. The biggest challenge for IoT is “security, security, security,” Boisseau emphasized.

Another top-level point Boisseau made is that over half of HPC systems are now sold to industry, notably across manufacturing, financial services, life sciences, energy, EDA, weather and digital content creation. “Big computing is now as fundamental to many industries as it is in research,” Boisseau said. Half of the high performance computing TAM (total addressable market), estimated at nearly $30 billion, is now in enterprise/industry, and there’s still a lot of untapped potential, in Boisseau’s opinion.

Market projections for AI are even steeper. Research houses are predicting that AI will grow to tens of billions of dollars a year (IDC predicts a surge past $4 billion in 2020; IBM expects market to be $2 trillion over next decade; Tractica plots $36.8 billion in revenue by 2025).

Boisseau is confident that the world needs big data AND deep learning, citing the following reasons/scenarios:

  • Innovation requires ever more capability: to design, engineer, manufacture, distribute, market and produce new/better products and services.
  • Modeling and simulation enable design, in accordance with physics/natural laws, and virtual engineering, manufacturing, testing.
  • Machine learning and deep learning enable discovery and innovation
    • When laws of nature don’t apply (social media, sentiment, etc.) or are non-linear/difficult to simulate accurately over time (e.g. weather forecasting).
    • That may be quicker and/or less costly depending on simulation scale, complexity versus data completeness.

“When we understand the laws of nature, when we understand the equations, it gives us an ability to model and simulate highly accurately,” said Boisseau. “But for crash simulations, we still don’t want to drive a car that’s designed with data analysis; we need modeling and simulation to truly understand structural dynamics and fluid flow and even then data analysis can be used in the interpretation.

“There will be times where data mining over all those crash simulations adds to the modeling and simulation accuracy. So modeling and simulation will always remain important, at least as long as the universe is governed by visible laws, especially in virtual engineering and manufacturing testing, but machine learning and deep learning enable discovery in other ways, especially when the laws of nature don’t apply.”

“If you’ve adopted HPC great, but deep learning is next,” Boisseau told the audience. “It might not be next year for some of you, it might be two years, five years, but I suspect it’s sooner than you think.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This