ORNL Studies Quantum, HPC, and Neuromorphic Computing for Deep Learning

By John Russell

April 3, 2017

Deep learning presents many opportunities and challenges. Training is a good example of the latter – it can take months or longer. An Oak Ridge National Laboratory-led team is studying how quantum computing, traditional HPC, and neuromorphic computing might be used to improve deep learning and their early work suggests each has strengths that could be leveraged independently or when used in concert with the others.

The work is presented in a paper (A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers), posted on arxiv.org and also summarized in a short article (Computing – Quantum deep) on the ORNL web site. “[We] evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determine network topology, and neuromorphic computing for a low-power hardware implementation.

Thomas Potok, ORNL

“Our results show the feasibility of using the three architectures in tandem to address the above deep learning limitations. We show a quantum computer can find high quality values of intra-layer connections weights, in a tractable time as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware,” write the study team led by Thomas Potok, ORN’s Computational Data Analytics Group.

Here’s a snapshot of the computational resources used or planned for use by the researchers:

  • “The quantum computer we are using is a D-Wave adiabatic quantum computer located at the University of Southern California Lockheed Martin Quantum Computing Center.”
  • The HPC resource is ORNL’s Titan computer with roughly 300,000 cores, and 18,000 GPUs. “Utilizing 500 nodes of Titan, the evolutionary algorithm was trained for 32 generations with 500 individuals in the population allowing us to evaluate 16,000 networks.”
  • The neuromorphic system “we will use to explore the MNIST problem is a memristive implementation of the neuroscience-inspired dynamic architectures (NIDA) system. NIDA is a simple SNN model composed of integrate-and-fire neurons and synapses with delays and weights that are affected by processes similar to long-term potentiation and long-term depression in biological brains. A digital hardware implementation based on NIDA, called Dynamic Adaptive Neural Network Array (DANNA), has also been created and is currently implemented on FPGA with a digital VLSI implementation in progress.”

There’s discussion of the strengths and weaknesses for each for each of  the three architectures: Quantum computers, for example, show promise but also impose constraints because of their ‘small’ size – “We use the MNIST dataset for our experiment, due to input size limitations of current quantum computers.”

Overall the work demonstrated the possibility of using “these three architectures to solve complex deep learning networks that are currently untrainable using a von Neumann architecture,” wrote the authors. Three highlights:

  • The quantum computer experiment demonstrated that “a complex neural network, i.e., one with intra-layer connections, can be successfully trained on the MNIST problem. This is a key advantage for a quantum approach and opens the possibility of training very complex networks.”
  • A HPC system “can be used to take the complex networks as building blocks and compare thousands of models to find the best performing networks for a given problem.”
  • The “best performing neural network and weights can be implemented into a complex network of memristors producing a low-power hardware device. This is a capability that is not feasible with a von Neumann architecture. This holds the potential to solve much more complicated problems than can currently be solved with deep learning.”

Link to full paper: https://arxiv.org/abs/1703.05364

Link to ORNL article: https://www.ornl.gov/news/computing-quantum-deep

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in its cloud service.  Google claimed the CPU is based on cut Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent perspective article published in the Journal of Chemical Read more…

U.S. 2024/25 Science Budgets Taking a Hit

April 8, 2024

In case you missed it, fiscal 2024/25 U.S. science budgets seem likely to take big hits despite Congressional talk of increased support, reports the American Institute of Physics (AIP) FYI policy tracking coverage. AIP F Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Parallel Perspectives: HPC Internships Educate and Inspire 

April 4, 2024

As an undergraduate Sophomore at the University of Chicago, Joey Lin embarked on a journey to explore how an internship opportunity involving high-performanc Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire