Fujitsu Launches M12 Servers; Emphasizes Commitment to SPARC

By John Russell

April 4, 2017

Delivering on their promised SPARC roadmap, Fujitsu and Oracle today introduced two new servers – the M12-2 and M12-2S – featuring the new SPARC64 XII chip announced last year and a new hybrid liquid/vapor cooling system. The new servers, says Fujitsu, “achieve the world’s highest per CPU core performance in arithmetic processing, offering dramatic improvements for a wide range of database workloads, from mission-critical systems on premises to big data processing in the cloud.”

A big part of the intended message here is that Fujitsu’s commitment to the SPARC ecosystem remains strong. “We feel this is a good empirical marker to show we are continuing to invest in the SPARC platform. This is not a softball product release. These are all significant advances and represent a lot of time and effort,” said Alex Lam, vice president and head of North America strategy.

Fujitsu, of course, is a major chip supplier and systems builder. The company notably jumped from the SPARC chip, which it used in building Japan’s K computer, to ARM for the post K computer now under development as part of Japan’s Flagship 2020 Project. The latter project has experienced delay which many observers attributed to challenges adapting the ARM architecture for supercomputing (see HPCwire article, Japan’s Post-K Computer Hits 1-2 Year Speed Bump). In any case, delivering on its SPARC roadmap may reassure the SPARC camp, including a large Oracle customer base, that Fujitsu isn’t planning to walk away from them.

Fujitsu M12 Servers

Akira Kabemoto, Fujitsu senior vice president, is quoted in the official release saying, “In addition to the Fujitsu SPARC M12, which is a result of close collaboration between Fujitsu and Oracle, Fujitsu will continue to develop cutting-edge technology that contributes to the creation of new value and supports customers in expanding their businesses.”

The M12-2 and M12-2S replace the M10 top-of-the-line servers and are aimed primarily at enterprise applications. That said, Fujitsu also sees opportunity for the new offerings in deep learning applications, according to Lam.

It’s probably worth noting that SPARC technology is not widely used in traditional HPC today.

“The HPC industry was at one point dominated by RISC processors, but x86 took over in the Beowulf cluster revolution. IBM POWER is the most noteworthy RISC processor still in the market, followed by SPARC systems from Fujitsu. Most of the original volume of SPARC came from Sun Microsystems, but Oracle (which acquired Sun) rarely sells HPC systems. With a new SPARC server, Fujitsu can continue to serve its existing customer base, but it is difficult to recapture market share from x86. IBM has at least addressed one major hurdle by making POWER “endian” compatible with x86 in data handling, which makes the migration easier,” noted Addison Snell, CEO, Intersect360 Research

Given the blurring of lines between traditional HPC and data-driven computing with deep learning as a centerpiece, perhaps SPARC may find room to grow amid a frothy landscape of alternative processors all seeking inroads.

Among improvements to the new servers are increased clock rates – 4.25 GHz in the M12-2S and 3.9GHz in the M12-2 – which contribute to performance gains of up to 2.5X over the M10 servers according to Lam. Combined with SPARC64’s flexible core activation the higher performance should allow reduced software licensing costs and time-to-solution. With core-level CPU activation, a minimum of just two processor cores must be activated initially. Core resources can be gradually expanded, as needed, in increments of a single core using activation keys. Benchmarks supporting Fujitsu’s “World’s highest performing core” claim are shown at the end of the article.

The M12-2S is positioned as a highly scalable platform while the M12-2S as a mid-range server. Both have core-based CPU activation, the hybrid cooling system, and Fujitsu’s Software-on-Chip instructions designed to enhance any applications such as encryption and data base acceleration Here’s a brief snapshot:

  • M12-2S. Up to 32 12-core, 4.25 GHz SPARC64 XII processors for a total of 384 cores and 3,072 threads. Main memory configurations range from 64 GB to 32 TB and support mixed DIMM capacities. Fujitsu says the M12-2S offers, “superior performance for mission-critical enterprise workloads and cloud computing. Employing proven Fujitsu supercomputer technology for highly parallel computing and an innovative cooling technology to achieve low latency access time between memory and CPU, the Fujitsu SPARC M12 servers can process large amounts of data in a short period of time.” Summary data sheet shown below.
  • M12-2. It is available in single- and dual-processor configurations that can scale to 24 cores and 192 threads. Flexible main memory configurations range from 64 GB to 2 TB and supporting mixed DIMM capacities. The server is a 4U form factor. Fujitsu says, “It is an ideal server for traditional enterprise-class workloads such as online transaction processing (OLTP), business intelligence and data warehousing (BIDW), enterprise resource planning (ERP), and customer relationship management (CRM), as well as new environments in cloud computing or big data processing.”


The enhanced M12 cooling system is called Vapor Liquid and Loop Cooling (or VLLC for short). It is twice as effective as the earlier liquid only system used on the M10. Think of the new system as a two chamber approach, explained Lam. The liquid flows through one, but a fraction is allowed to seep out into a second chamber where it vaporizes absorbing more heat before being returned to the main flow.

“The system’s liquid is essentially water, which is the same base liquid used in the M10. The difference in the M12 is the inclusion of a pressurized VLLC chamber which has a lower air pressure. So while water normally vaporizes at 100 degree Celsius (212 degree Fahrenheit), in the VLLC the water is able to vaporize at a much lower temperature (e.g., 50 degrees C) due to the lower air pressure,” said Lam.

“Water in the VLLC (M12) is vaporized by the heat of CPU because the air pressure in the VLLC chamber is low, whereas in the M10 there isn’t this pressurized chamber, hence the much higher boiling point of the liquid.” It a little hard to visualize but the result, said Lam, is a 2X efficiency improvement.

Both systems are available now. Pricing depends on the configuration. Lam said a base configuration of the M12-2 systems would be in the $35,000 range.

CPU Core Performance Benchmark

  • Comparison based on registered results per core in the SPECint_rate2006 and SPECfp_rate2006 benchmark tests.
  • SPECint_rate2006 performance results and measurement environment: Fujitsu SPARC M12-2S Performance result (peak): 102 per CPU core Measurement environment: SPARC64 XII (4.25GHz) x1 core, Oracle Solaris 11.3, Version 12.6 of Oracle Developer Studio
  • SPECfp_rate2006 performance results and measurement environment: Fujitsu SPARC M12-2S Performance result (peak): 102 per CPU core Measurement environment: SPARC64 XII (4.25GHz) x1 core, Oracle Solaris 11.3, Version 12.6 of Oracle Developer Studio
  • These performance results were submitted to SPEC (The Standard Performance Evaluation Corporation) on April 3, 2017.

Link to the Fujitsu press release: http://www.fujitsu.com/global/about/resources/news/press-releases/2017/0404-01.html

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This