IBM Bare Metal Cloud Targets AI with New P100 GPUs

By Tiffany Trader

April 5, 2017

IBM announced today that it will be adding Nvidia P100 graphics processors to its Bluemix cloud later this month, becoming the “first major global cloud vendor” to provide the high-end “Pascal” GPUs. Big Blue is targeting the new hardware at customers who run compute-heavy workloads, such as artificial intelligence, deep learning, data analytics and high-performance computing.

Unlike Nimbix, the heterogeneous cloud vendor that began offering NVLink’d Nvidia P100 GPUs on the IBM “Minsky” Power8 platform last October (2016), IBM will be using PCIe form factor cards within an Intel x86 server. This is not really a surprise since IBM operates most of its cloud servers on Intel-based chip sets. Customers will be able to add up to two Nvidia P100 cards to a dual Xeon E5-2690 v3 machine (24-core CPUs running at 2.6 GHz).

The IBM cloud does have some Power server options for specific big data workloads but it does not have an expanded assortment of Power, says Jay Jubran, Global Offering Management for Compute at IBM Cloud. A plan to integrate Power8 based systems with NVIDIA P100 GPUs into the IBM cloud portfolio is underway. “We are are working side by side with the Power Systems team to ensure that IBM Cloud will deliver access to the best of IBM technology to allow customers to run HPC and AI workloads,” Jubran told us.

The Power8 “Minsky” platform enables tight coupling of the Power CPU and P100 GPU over Nvidia’s proprietary NVLink interconnect. The mezzanine form factor P100 also provides nearly 13 percent better raw performance than the PCIe card, 5.3 double-precision teraflops versus 4.7. Both versions provide 16 gigabytes of HBM2 stacked memory. Networking on the IBM cloud stands at 10 Gigabit Ethernet today with IBM stating that future platforms might go up to 25 Gigabit Ethernet.

IBM will be first to the P100 punch in terms of major cloud providers, but as we have seen, other cloud purveyors are advancing with P100 plays of their own. Here’s a rundown:

Nimbix – As mentioned above, Nimbix added IBM Power S822LC for HPC systems (codenamed “Minsky”) to its heterogeneous HPC cloud platform last October. Target markets include high-performance computing, data analytics, in-memory databases, and machine learning.

Cirrascale – On its GPU-driven deep learning infrastructure as a service, San Diego, Calif.-based Cirrascale offers a number of P100-based server configurations, including four-way and eight-way Intel-based GPU servers and IBM Power8 Systems with two and four GPU options.

Google – The Google Cloud platform website states that P100s are “coming soon.” Google will also be incorporating AMD FirePro S9300 x2 GPUS into its infrastructure. Google began offering K80 GPU-equipped virtual machines (as a beta release) in February of this year.

Microsoft – Microsoft last month revealed blueprints for a new open source P100-based accelerator – HGX-1 – developed under Project Olympus. It’s an accelerator box with eight Tesla P100s, connected in the same hypercube mesh as the Nvidia DGX-1 server and also leveraging the NVLink interconnect. The HGX-1 hooks to servers via PCIe interface. We’re to assume the boxes, being manufactured by Ingrasys, will show up on Azure but Microsoft hasn’t indicated when that will be. The company has had some notable delays in GPU rollouts – announcing a planned K80 instance in September 2015, and AWS beating them to  general availability a year later.

Tencent – Two weeks ago, Chinese cloud giant Tencent said it will offer a range of cloud products that will include GPU cloud servers incorporating Nvidia Tesla P100, P40 and M40 GPU accelerators and Nvidia deep learning software. Tencent Cloud launched GPU servers based on Nvidia Tesla M40 GPUs and NVIDIA deep learning software in December; it expects to integrate cloud servers with up to eight Pascal-based GPUs each by mid-year.

Reigning cloud king Amazon does not yet offer Nvidia’s Pascal-based silicon (the P100 or the P40 inferencing engine). Amazon’s most recent P2 instance family is backed by Kepler-generation K80 parts, rolled out last September (2016).

IBM emphasized the advantage of its bare metal cloud offering, compared to the multi-tenant environments of AWS and the other mega-cloud providers, especially for HPC workloads. “The main reason why people come to IBM cloud, other than the global presence, is the performance and consistency of having access to the bare metal. The bare metal allows us to give better performance than any other virtualized environment with the same specification because we do not have the hypervisor tax which is roughly 10-15 percent of the CPU power,” said Jubran.

“We find HPC workloads typically find their way to the IBM cloud. If the customer is looking to run HPC on an hourly basis sometimes you’ll see them go to other clouds, but in terms of monthly consumption we have the best offering in terms of performance and price value,” he added.

The bare metal infrastructure is also attractive to the graphics community, for gaming, especially a subset called cognitive gaming, and for engineering, said Jubran. Financial services, healthcare, and retail are all target verticals.

Customers that prioritize highly elastic resources and pay-by-the-sip pricing typically go to IBM’s competitors, Jubran noted, but their core customers are the ones who understand the performance metrics that IBM offers.

“We are attracting both digital customers looking for performance, gaming customers and born on the web type customers who are looking for bare metal performance, but scalability of the cloud. And we also get in the higher end of the spectrum in terms of enterprise and that is because of IBM obviously being an enterprise-focused company from day one and they put trust in IBM to bring their workload to our datacenters. So having both aspects of the spectrum keeps us on the innovative side in terms of digital and keeps us on the high-performance secure side for the enterprise,” said Jubran.

Aside from the advantage of this enterprise trust factor, IBM’s distributed model of 50 datacenters (built up since the Softlayer acquisition in 2013 for a reported $2 billion) gives them the geo-precision to provide local data sovereignty for their customers and is a natural fit for edge computing (important for AI training workflows and for IoT). For many customers, proximity of compute and data are far more important than saving on compute cost offered by the greater elasticity of mega-datacenters. A typical IBM datacenter unit consists of roughly 20,000 servers; in the hyperscaler world, that’s pretty small.

The Tesla P100 joins Nvidia’s portfolio of GPU offerings on the IBM Cloud, including the older Tesla K2 GPU, the Tesla M60 for virtualized graphics and the Tesla K80, which IBM added in 2015, about a year ahead of the competition. IBM expects most of its K80 customers will be migrating over to the P100 servers as they begin adding the parts later this month. “We also expect newcomers into the AI platform as the P100 is the most powerful GPU in terms of AI workloads that are based on TensorFlow, Caffe, Nvidia SDK or any of the AI SDKs available out today,” said Jubran. “With so much focus from all the different industries in AI, I think you will see more and more of those workloads coming to IBM cloud and the P100 will enable that. If you look at the Nvidia material for P100 it is the most powerful GPU for both training and inferencing, the two aspects of AI.”

“With all key deep learning frameworks GPU-accelerated and over 400 HPC applications in a broad range of domains, including the top 10 high performance computing applications, IBM Cloud customers can quickly tap into the power of the our GPU platform to boost performance, accelerate time to results and save money,” Nvidia’s Vice President of Accelerated Computing Ian Buck wrote in a blog post.

The cost for the new Pascal-based hardware is $750 per month per P100 GPU card, tacked on to the price of the server. This adds a 50 percent premium over the cost of the K80s ($500 per card) but the P100 card offers a 60 percent additional performance improvement over the K80. That should make switching a no-brainer and while IBM won’t be forcing customers with active workloads off the K80, they are planning to sunset the older Teslas as inventory depletes.

Editor’s note — April 6, 2017: In an earlier version of this article, we reported (based on information IBM shared with us) that the Power8 “Minsky” platform was not on IBM’s cloud roadmap. After the article was published, IBM contacted us to let us know that it does have plans to incorporate Power8 based systems with Nvidia P100 GPUs into its cloud portfolio. We have amended the story to include this updated information.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This