IBM Bare Metal Cloud Targets AI with New P100 GPUs

By Tiffany Trader

April 5, 2017

IBM announced today that it will be adding Nvidia P100 graphics processors to its Bluemix cloud later this month, becoming the “first major global cloud vendor” to provide the high-end “Pascal” GPUs. Big Blue is targeting the new hardware at customers who run compute-heavy workloads, such as artificial intelligence, deep learning, data analytics and high-performance computing.

Unlike Nimbix, the heterogeneous cloud vendor that began offering NVLink’d Nvidia P100 GPUs on the IBM “Minsky” Power8 platform last October (2016), IBM will be using PCIe form factor cards within an Intel x86 server. This is not really a surprise since IBM operates most of its cloud servers on Intel-based chip sets. Customers will be able to add up to two Nvidia P100 cards to a dual Xeon E5-2690 v3 machine (24-core CPUs running at 2.6 GHz).

The IBM cloud does have some Power server options for specific big data workloads but it does not have an expanded assortment of Power, says Jay Jubran, Global Offering Management for Compute at IBM Cloud. A plan to integrate Power8 based systems with NVIDIA P100 GPUs into the IBM cloud portfolio is underway. “We are are working side by side with the Power Systems team to ensure that IBM Cloud will deliver access to the best of IBM technology to allow customers to run HPC and AI workloads,” Jubran told us.

The Power8 “Minsky” platform enables tight coupling of the Power CPU and P100 GPU over Nvidia’s proprietary NVLink interconnect. The mezzanine form factor P100 also provides nearly 13 percent better raw performance than the PCIe card, 5.3 double-precision teraflops versus 4.7. Both versions provide 16 gigabytes of HBM2 stacked memory. Networking on the IBM cloud stands at 10 Gigabit Ethernet today with IBM stating that future platforms might go up to 25 Gigabit Ethernet.

IBM will be first to the P100 punch in terms of major cloud providers, but as we have seen, other cloud purveyors are advancing with P100 plays of their own. Here’s a rundown:

Nimbix – As mentioned above, Nimbix added IBM Power S822LC for HPC systems (codenamed “Minsky”) to its heterogeneous HPC cloud platform last October. Target markets include high-performance computing, data analytics, in-memory databases, and machine learning.

Cirrascale – On its GPU-driven deep learning infrastructure as a service, San Diego, Calif.-based Cirrascale offers a number of P100-based server configurations, including four-way and eight-way Intel-based GPU servers and IBM Power8 Systems with two and four GPU options.

Google – The Google Cloud platform website states that P100s are “coming soon.” Google will also be incorporating AMD FirePro S9300 x2 GPUS into its infrastructure. Google began offering K80 GPU-equipped virtual machines (as a beta release) in February of this year.

Microsoft – Microsoft last month revealed blueprints for a new open source P100-based accelerator – HGX-1 – developed under Project Olympus. It’s an accelerator box with eight Tesla P100s, connected in the same hypercube mesh as the Nvidia DGX-1 server and also leveraging the NVLink interconnect. The HGX-1 hooks to servers via PCIe interface. We’re to assume the boxes, being manufactured by Ingrasys, will show up on Azure but Microsoft hasn’t indicated when that will be. The company has had some notable delays in GPU rollouts – announcing a planned K80 instance in September 2015, and AWS beating them to  general availability a year later.

Tencent – Two weeks ago, Chinese cloud giant Tencent said it will offer a range of cloud products that will include GPU cloud servers incorporating Nvidia Tesla P100, P40 and M40 GPU accelerators and Nvidia deep learning software. Tencent Cloud launched GPU servers based on Nvidia Tesla M40 GPUs and NVIDIA deep learning software in December; it expects to integrate cloud servers with up to eight Pascal-based GPUs each by mid-year.

Reigning cloud king Amazon does not yet offer Nvidia’s Pascal-based silicon (the P100 or the P40 inferencing engine). Amazon’s most recent P2 instance family is backed by Kepler-generation K80 parts, rolled out last September (2016).

IBM emphasized the advantage of its bare metal cloud offering, compared to the multi-tenant environments of AWS and the other mega-cloud providers, especially for HPC workloads. “The main reason why people come to IBM cloud, other than the global presence, is the performance and consistency of having access to the bare metal. The bare metal allows us to give better performance than any other virtualized environment with the same specification because we do not have the hypervisor tax which is roughly 10-15 percent of the CPU power,” said Jubran.

“We find HPC workloads typically find their way to the IBM cloud. If the customer is looking to run HPC on an hourly basis sometimes you’ll see them go to other clouds, but in terms of monthly consumption we have the best offering in terms of performance and price value,” he added.

The bare metal infrastructure is also attractive to the graphics community, for gaming, especially a subset called cognitive gaming, and for engineering, said Jubran. Financial services, healthcare, and retail are all target verticals.

Customers that prioritize highly elastic resources and pay-by-the-sip pricing typically go to IBM’s competitors, Jubran noted, but their core customers are the ones who understand the performance metrics that IBM offers.

“We are attracting both digital customers looking for performance, gaming customers and born on the web type customers who are looking for bare metal performance, but scalability of the cloud. And we also get in the higher end of the spectrum in terms of enterprise and that is because of IBM obviously being an enterprise-focused company from day one and they put trust in IBM to bring their workload to our datacenters. So having both aspects of the spectrum keeps us on the innovative side in terms of digital and keeps us on the high-performance secure side for the enterprise,” said Jubran.

Aside from the advantage of this enterprise trust factor, IBM’s distributed model of 50 datacenters (built up since the Softlayer acquisition in 2013 for a reported $2 billion) gives them the geo-precision to provide local data sovereignty for their customers and is a natural fit for edge computing (important for AI training workflows and for IoT). For many customers, proximity of compute and data are far more important than saving on compute cost offered by the greater elasticity of mega-datacenters. A typical IBM datacenter unit consists of roughly 20,000 servers; in the hyperscaler world, that’s pretty small.

The Tesla P100 joins Nvidia’s portfolio of GPU offerings on the IBM Cloud, including the older Tesla K2 GPU, the Tesla M60 for virtualized graphics and the Tesla K80, which IBM added in 2015, about a year ahead of the competition. IBM expects most of its K80 customers will be migrating over to the P100 servers as they begin adding the parts later this month. “We also expect newcomers into the AI platform as the P100 is the most powerful GPU in terms of AI workloads that are based on TensorFlow, Caffe, Nvidia SDK or any of the AI SDKs available out today,” said Jubran. “With so much focus from all the different industries in AI, I think you will see more and more of those workloads coming to IBM cloud and the P100 will enable that. If you look at the Nvidia material for P100 it is the most powerful GPU for both training and inferencing, the two aspects of AI.”

“With all key deep learning frameworks GPU-accelerated and over 400 HPC applications in a broad range of domains, including the top 10 high performance computing applications, IBM Cloud customers can quickly tap into the power of the our GPU platform to boost performance, accelerate time to results and save money,” Nvidia’s Vice President of Accelerated Computing Ian Buck wrote in a blog post.

The cost for the new Pascal-based hardware is $750 per month per P100 GPU card, tacked on to the price of the server. This adds a 50 percent premium over the cost of the K80s ($500 per card) but the P100 card offers a 60 percent additional performance improvement over the K80. That should make switching a no-brainer and while IBM won’t be forcing customers with active workloads off the K80, they are planning to sunset the older Teslas as inventory depletes.

Editor’s note — April 6, 2017: In an earlier version of this article, we reported (based on information IBM shared with us) that the Power8 “Minsky” platform was not on IBM’s cloud roadmap. After the article was published, IBM contacted us to let us know that it does have plans to incorporate Power8 based systems with Nvidia P100 GPUs into its cloud portfolio. We have amended the story to include this updated information.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Leading Solution Providers

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This