Google Pulls Back the Covers on Its First Machine Learning Chip

By Tiffany Trader

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Google has been using the machine learning accelerator in its datacenters since 2015, but hasn’t said much about the hardware until now.

In a blog post published yesterday (April 5, 2017), Norm Jouppi, distinguished hardware engineer at Google, observes, “The need for TPUs really emerged about six years ago, when we started using computationally expensive deep learning models in more and more places throughout our products. The computational expense of using these models had us worried. If we considered a scenario where people use Google voice search for just three minutes a day and we ran deep neural nets for our speech recognition system on the processing units we were using, we would have had to double the number of Google data centers!”

The paper, “In-Datacenter Performance Analysis of a Tensor Processing Unit​,” (the joint effort of more than 70 authors) describes the TPU thusly:

“The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPU’s deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs (caches, out-of-order execution, multithreading, multiprocessing, prefetching, …) that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the TPU is relatively small and low power.”

Google researchers compared the performance and energy-efficiency of the TPU to commercial CPUs and GPUs (a server-class Intel Haswell CPU and an Nvidia K80 GPU) on inferencing workloads. The workload was written in the TensorFlow framework and uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95 percent of Google datacenters’ NN inference demand.

The results show significant speedups and energy-savings for the TPU:

● Inference apps usually emphasize response-time over throughput since they are often user-facing.

● As a result of latency limits, the K80 GPU is under-utilized for inference, and is just a little faster than the Haswell CPU.

● Despite having a much smaller and lower power chip, the TPU has 25 times as many MACs and 3.5 times as much on-chip memory as the K80 GPU.

● The TPU is about 15X – 30X faster at inference than the K80 GPU and the Haswell CPU.

● Four of the six NN apps are memory-bandwidth limited on the TPU; if the TPU were revised to have the same memory system as the K80 GPU, it would be about 30X – 50X faster than the GPU and CPU.

● The performance/Watt of the TPU is 30X – 80X that of contemporary products; the revised TPU with K80 memory would be 70X – 200X better.

● While most architects have been accelerating CNNs, they represent just 5% of our datacenter workload.

Impressive leads for the TPU, but as with most benchmarking claims, some additional context is helpful. The K80 used for the testing is Nvidia’s Kepler-generation Tesla, released in November 2014. Unlike the newest-generation Pascal silicon (not even a year old), Kepler was not optimized for 16-bit and 8-bit neural net computing tasks. Nvidia has since released stronger inferencing engines, the P4 and P40 GPUs, which feature specialized instructions based on 8-bit (INT8) operations. The upshot of INT8 is that it enables 4X the throughput of single-precision floating point (FP32).

The Google report lists the TPU as capable of 92 peak 8-bit Tera-Operations per second (TOPS). The Tesla P40 is capable of 47 8-bit TOPS. Not an overwhelming discrepancy. However, on power, the gap widens: TDP is 75 watts for the TPU compared with 250 watts for the P40. The P4 offers a better performance-per-watt profile than the P40: 22 8-bit TOPS in a 75 watt TDP – still about a fourth the efficiency of the TPU. Obviously we’re just looking at spec’d ratings here; the chart below shows the TPU staying well under its TDP at run-time.

The peak TOPS of a single K80 GPU die without GPU Boost enabled is 2.8 (versus 8.7 32-bit TOPS for a full card with boost mode enabled). Google opted not to use GPU Boost because of power and cooling limitations of the study but did further analysis to show that “boost mode would have a minor impact on our energy-speed analysis.” Google also discusses why they presented all CPU results as floating point rather than 8-bit (facilitated with AVX2 integer support) — see Section 8 for more.

Anticipating claims that it didn’t compare its TPU to the latest Nvidia gear, Google notes that “the 16-nm, 1.5GHz, 250W P40 datacenter GPU can perform 47 Tera 8-bit ops/sec, but was unavailable in early 2015, so isn’t contemporary with our three platforms. We also can’t know the fraction of P40 peak delivered within our rigid time bounds. If we compared newer chips, Section 7 shows that we could triple performance of the 28-nm, 0.7GHz, 40W TPU just by using the K80’s GDDR5 memory (at a cost of an additional 10W).”

At any rate, Nvidia isn’t the only company advancing hardware for machine learning. AI-focused silicon efforts abound. Intel has a full stack of AI hardware and software from its Nervana acquisition, and its next-gen Phi product, Knights Mill (due out this year), will incorporate support for variable precision compute. AI startups GraphCore in the UK, Wave Computing in San Diego, and KnuPath in Austin are all working on specialized lower-precision, higher-performance silicon. FPGAs also show promise for inferencing.

While Google compared its TPU to an older-generation of Nvidia silicon, Google itself may have been using a “previous generation” TPU. “There is plenty of headroom to improve the TPU, so it’s not an easy target,” note the authors. More pointedly, a reference in the blog post to “this first generation of TPUs” implies that a second-generation is on Google’s roadmap or perhaps already in existence. Typically when Google releases projects into the community (MapReduce, TensorFlow), you can bet that their internal version is a good few years ahead.

This leads to the big question on everyone’s mind, whether Google will commercialize the TPU for use outside the company. As a stand-alone product, this is unlikely as the big tech companies, hyperscalers and specialized hardware startups all race to establish dominance in an AI market predicted by market research firm Tractica to grow to $36 billion over the next decade. The TPUs have a better shot at showing up inside the Google cloud, although right now the company is focused on incorporating Nvidia Tesla P100s and AMD FirePro S9300 x2 GPUs into its IaaS platform.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire