Google Pulls Back the Covers on Its First Machine Learning Chip

By Tiffany Trader

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Google has been using the machine learning accelerator in its datacenters since 2015, but hasn’t said much about the hardware until now.

In a blog post published yesterday (April 5, 2017), Norm Jouppi, distinguished hardware engineer at Google, observes, “The need for TPUs really emerged about six years ago, when we started using computationally expensive deep learning models in more and more places throughout our products. The computational expense of using these models had us worried. If we considered a scenario where people use Google voice search for just three minutes a day and we ran deep neural nets for our speech recognition system on the processing units we were using, we would have had to double the number of Google data centers!”

The paper, “In-Datacenter Performance Analysis of a Tensor Processing Unit​,” (the joint effort of more than 70 authors) describes the TPU thusly:

“The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPU’s deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs (caches, out-of-order execution, multithreading, multiprocessing, prefetching, …) that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the TPU is relatively small and low power.”

Google researchers compared the performance and energy-efficiency of the TPU to commercial CPUs and GPUs (a server-class Intel Haswell CPU and an Nvidia K80 GPU) on inferencing workloads. The workload was written in the TensorFlow framework and uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95 percent of Google datacenters’ NN inference demand.

The results show significant speedups and energy-savings for the TPU:

● Inference apps usually emphasize response-time over throughput since they are often user-facing.

● As a result of latency limits, the K80 GPU is under-utilized for inference, and is just a little faster than the Haswell CPU.

● Despite having a much smaller and lower power chip, the TPU has 25 times as many MACs and 3.5 times as much on-chip memory as the K80 GPU.

● The TPU is about 15X – 30X faster at inference than the K80 GPU and the Haswell CPU.

● Four of the six NN apps are memory-bandwidth limited on the TPU; if the TPU were revised to have the same memory system as the K80 GPU, it would be about 30X – 50X faster than the GPU and CPU.

● The performance/Watt of the TPU is 30X – 80X that of contemporary products; the revised TPU with K80 memory would be 70X – 200X better.

● While most architects have been accelerating CNNs, they represent just 5% of our datacenter workload.

Impressive leads for the TPU, but as with most benchmarking claims, some additional context is helpful. The K80 used for the testing is Nvidia’s Kepler-generation Tesla, released in November 2014. Unlike the newest-generation Pascal silicon (not even a year old), Kepler was not optimized for 16-bit and 8-bit neural net computing tasks. Nvidia has since released stronger inferencing engines, the P4 and P40 GPUs, which feature specialized instructions based on 8-bit (INT8) operations. The upshot of INT8 is that it enables 4X the throughput of single-precision floating point (FP32).

The Google report lists the TPU as capable of 92 peak 8-bit Tera-Operations per second (TOPS). The Tesla P40 is capable of 47 8-bit TOPS. Not an overwhelming discrepancy. However, on power, the gap widens: TDP is 75 watts for the TPU compared with 250 watts for the P40. The P4 offers a better performance-per-watt profile than the P40: 22 8-bit TOPS in a 75 watt TDP – still about a fourth the efficiency of the TPU. Obviously we’re just looking at spec’d ratings here; the chart below shows the TPU staying well under its TDP at run-time.

The peak TOPS of a single K80 GPU die without GPU Boost enabled is 2.8 (versus 8.7 32-bit TOPS for a full card with boost mode enabled). Google opted not to use GPU Boost because of power and cooling limitations of the study but did further analysis to show that “boost mode would have a minor impact on our energy-speed analysis.” Google also discusses why they presented all CPU results as floating point rather than 8-bit (facilitated with AVX2 integer support) — see Section 8 for more.

Anticipating claims that it didn’t compare its TPU to the latest Nvidia gear, Google notes that “the 16-nm, 1.5GHz, 250W P40 datacenter GPU can perform 47 Tera 8-bit ops/sec, but was unavailable in early 2015, so isn’t contemporary with our three platforms. We also can’t know the fraction of P40 peak delivered within our rigid time bounds. If we compared newer chips, Section 7 shows that we could triple performance of the 28-nm, 0.7GHz, 40W TPU just by using the K80’s GDDR5 memory (at a cost of an additional 10W).”

At any rate, Nvidia isn’t the only company advancing hardware for machine learning. AI-focused silicon efforts abound. Intel has a full stack of AI hardware and software from its Nervana acquisition, and its next-gen Phi product, Knights Mill (due out this year), will incorporate support for variable precision compute. AI startups GraphCore in the UK, Wave Computing in San Diego, and KnuPath in Austin are all working on specialized lower-precision, higher-performance silicon. FPGAs also show promise for inferencing.

While Google compared its TPU to an older-generation of Nvidia silicon, Google itself may have been using a “previous generation” TPU. “There is plenty of headroom to improve the TPU, so it’s not an easy target,” note the authors. More pointedly, a reference in the blog post to “this first generation of TPUs” implies that a second-generation is on Google’s roadmap or perhaps already in existence. Typically when Google releases projects into the community (MapReduce, TensorFlow), you can bet that their internal version is a good few years ahead.

This leads to the big question on everyone’s mind, whether Google will commercialize the TPU for use outside the company. As a stand-alone product, this is unlikely as the big tech companies, hyperscalers and specialized hardware startups all race to establish dominance in an AI market predicted by market research firm Tractica to grow to $36 billion over the next decade. The TPUs have a better shot at showing up inside the Google cloud, although right now the company is focused on incorporating Nvidia Tesla P100s and AMD FirePro S9300 x2 GPUs into its IaaS platform.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Penguin Computing Brings Cascade Lake-AP to OCP Form Factor

July 7, 2020

Penguin Computing, a subsidiary of SMART Global Holdings, Inc., is announcing a new Tundra server, Tundra AP, that is the first to implement the Intel Xeon Scalable 9200 series processors (codenamed Cascade Lake-AP) in t Read more…

By Tiffany Trader

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance family on Google Compute Engine. The instances are powered by t Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial research. Can you discuss key developments in recent years? Read more…

By Steve Conway, Hyperion

The Barcelona Supercomputing Center Offers a Virtual Tour of Its MareNostrum Supercomputer

July 6, 2020

With the COVID-19 pandemic continuing to threaten the world and disrupt normal operations, facility tours remain a little difficult to operate, with many supercomputing centers having shuttered facility tours for visitor Read more…

By Oliver Peckham

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance fam Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

Contributors

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This