HPC and the Colocation Datacenter – a Bridge Too Far?

By Clive Longbottom, Quocirca

April 7, 2017

In this guest commentary, industry analyst Clive Longbottom offers a European perspective on the current capability of colocation datacenters to meet the growing requirements of HPC users.

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. But this still leaves the dilemma of how organizations can cost-justify building dedicated datacenter facilities for supporting such platforms that may become surplus to requirement in just a year or two.

The obvious alternative is to turn to a colocation datacenter provider. However, in the UK and in many areas of Europe, the reality may not be quite so simple, as fit-for-purpose colocation facilities tend to be few and far between. HPC users will find it challenging to find colocation providers capable of meeting their specific and increasingly IoT-driven big data processing and analytical demands, especially when it comes to the powering and cooling of highly-dense and complex platforms.

Is the only answer therefore to either accept the risk of going colo, or continue building expensive in-house datacenters?

Perhaps for some, particularly the not-for-profit science research sector, a best of both worlds alternative is already available whereby HPC resources are shared. Certainly in the UK and some other countries in Europe such government backed solutions are on offer. For example, only last month it was announced that six UK universities are each to host HPC centers with $25 million of funding from the Engineering and Physical Sciences Research Council, a UK government body. This is to bridge the gap between the computing capabilities currently available to researchers in many UK universities and the state-of-the-art HPC resources accessible via the UK National Supercomputing Service (ARCHER).

But for many commercial organizations, be they in financial services, manufacturing, retail, oil & gas, pharmaceuticals and so on, the hard choice remains whether to self-build or buy space in colo datacenters. For those where self-build has been ruled out for reasons of sheer capital expense and where HPC project timescales are just too short to warrant a dedicated facility, colocation seems inevitable. This then presents a further dilemma. There are many colos to choose from but the majority have insufficient power and cooling for HPC densities and inadequate back up and auxiliary power services to meet continuity requirements.

Faced with such constraints, some HPC users turn to the general public cloud as a scale-out option. However, public cloud is generally unsuitable for true HPC workloads despite cloud computing’s premise of elasticity for providing additional at-will compute resource for specific workloads.

Cloud may be fine for standard workloads where the amount of CPU, storage or network resources necessary for a specific workload are generally quite definable. However, with HPC it is considerably more complex as there is a need for different CPU and GPU server capabilities; for highly engineered interconnects between all the various systems and resources; for storage latencies to be maintained in the low milli, micro or even nanoseconds.  All of this requires highly specialised workload orchestration that is not available on general public cloud platforms.

Attempting to create a true HPC environment on top of a general public cloud is therefore untenable. So yet again, organizations tend to find themselves back at square one, deciding on or reverting to a self-build solution, or making the best of what colo has to offer. A real catch 22 situation!

Key colocation considerations for HPC users:

If the consensus is to take the colocation option the following decision criteria may serve as a useful guide:

Power

Hyper-dense HPC equipment needs high power densities, far more than the average colocation facility in Europe currently provides. The average power per rack for a ‘standard’ platform rarely exceeds 8kW per rack – in fact the average for colocation facilities is closer to 5kW. A dense HPC platform will typically draw around 12kW per rack and in some cases 30kW or more. Can the colocation facility provide that extra power now – not just promise it for the future?  Will it charge a premium price for routing more power to your system?  Furthermore, do the multi-cabled power aggregation systems required include sufficient power redundancy?

Careful consideration must therefore be given to future-proofing when it comes to power availability to avoid the potential for unplanned downtime, or the disruption and cost involved in the event of migration/de-installation should the facility become power-strapped. Clearly, PUE and carbon emissions credentials will also need evaluation from a cost, carbon tax and CSR perspective.

Back Up

There will always be some form of immediate failover power supply in place which is then replaced by auxiliary power from diesel generators.  However, such immediate power provision is expensive, particularly when there is a continuous high draw, as is required by HPC.  UPS and auxiliary power systems must be capable of supporting all workloads running in the facility at the same time, along with overhead and enough redundancy to deal with any failure within the emergency power supply system itself. This is not necessarily accommodated in colocation facilities looking to move up from general purpose applications and services to supporting true HPC environments.

Cooling

With HPC requiring highly targeted cooling, simple computer room air conditioning (CRAC) or free air cooling systems (such as swamp or adiabatic coolers) may not have the capabilities required.

Even where a modern HPC system may be using in-row cooling, so removing the need for adequate in-facility cooling, removing the heat generated in an effective manner may be a problem. Hot and Cold Aisle cooling systems are increasingly inadequate for addressing the heat created by larger HPC environments which will require specialized and often custom built cooling systems and procedures.

This places increased emphasis for ensuring there are on-site engineering personnel on hand with demonstrable knowledge in designing and building bespoke cooling systems such as direct liquid cooling for highly efficient heat removal and avoiding on board hot spots. This will reduce the problems of high temperatures without excessive air circulation which is both expensive and noisy.

Fiber Connectivity/Latency

Consider the availability of diverse high speed on-site fibre cross connects. Basic public connectivity solutions will generally not be sufficient for HPC systems so look for providers that have specialized connectivity solutions.

The HPC platform may be working well; all access devices may be working; the public internet is working.  However, what if the link between the organization or the public internet and the colocation facility goes down and there is no capability for failover?  As many problems with connectivity come down to physical damage, such as caused by cables being broken during roadworks, ensuring that connectivity is through multiple diverse connections from the facility is crucial.

Other areas where a colocation provider should be able to demonstrate capabilities include specialized connections to public clouds, such as Microsoft Azure ExpressRoute and AWS Direct Connect. These bypass the public internet to enable more consistent and secure interactions between the HPC platform and other workloads the organization may be operating.

Location

Last but not least, the physical location of the datacenter will impact directly on rack space costs and power availability. In the case of colocation there are often considerable differences in rack space rents between regional facilities and those based in or around large metro areas such as London. Perhaps of more concern to HPC users, the availability and reliability of power supply will likely vary from region to region. The majority are not directly connected to the grid and several pylon hops from sub-stations. Some facilities in power-strapped areas are already pushed to supply 4kW per rack.

Fortunately, the ever decreasing cost of high speed fiber is providing more freedom to build modern colo facilities much further away from metro areas but without incurring the latency issues of old. Examples here include locations such as the NGD mega data facility in South Wales, where renewable power is in abundant supply (180 MW) and is directly connected to the national grid; and of course some of the emerging facilities in the Nordic region where hydroelectric power is plentiful and low cost.

In summary, look closely enough and commercial HPC users will find a few fit for purpose colocation choices already available in the UK and Europe. Provided, that is, they carefully evaluate the ability of their would-be partners to guarantee the power and back up contingencies required for the duration of the project, and with high levels of redundancy on tap should needs suddenly change or for mitigating risk of any unplanned downtime. Ensuring the engineering team is capable of understanding and delivering bespoke rack configurations and specialized cooling environments is also a major prerequisite.

About the Author

Clive Longbottom is the founder and research director of Quocirca, the UK-based pan-European market analyst firm. Clive covers areas as diverse as storage, servers, operating systems, IT platforms, datacenters, systems management, on-line services, big data and analytics.

Trained as a Chemical Engineer, Clive understands that everything within a business is predicated on process, and that the only point of technology is in making sure that the processes run efficiently and smoothly.  As a research engineer for Johnson Matthey he worked on several projects, including anti-cancer drugs, efficient NoX/SoX burners and a long period working on primary energy generation via fuel cells.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This