HPC and the Colocation Datacenter – a Bridge Too Far?

By Clive Longbottom, Quocirca

April 7, 2017

In this guest commentary, industry analyst Clive Longbottom offers a European perspective on the current capability of colocation datacenters to meet the growing requirements of HPC users.

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. But this still leaves the dilemma of how organizations can cost-justify building dedicated datacenter facilities for supporting such platforms that may become surplus to requirement in just a year or two.

The obvious alternative is to turn to a colocation datacenter provider. However, in the UK and in many areas of Europe, the reality may not be quite so simple, as fit-for-purpose colocation facilities tend to be few and far between. HPC users will find it challenging to find colocation providers capable of meeting their specific and increasingly IoT-driven big data processing and analytical demands, especially when it comes to the powering and cooling of highly-dense and complex platforms.

Is the only answer therefore to either accept the risk of going colo, or continue building expensive in-house datacenters?

Perhaps for some, particularly the not-for-profit science research sector, a best of both worlds alternative is already available whereby HPC resources are shared. Certainly in the UK and some other countries in Europe such government backed solutions are on offer. For example, only last month it was announced that six UK universities are each to host HPC centers with $25 million of funding from the Engineering and Physical Sciences Research Council, a UK government body. This is to bridge the gap between the computing capabilities currently available to researchers in many UK universities and the state-of-the-art HPC resources accessible via the UK National Supercomputing Service (ARCHER).

But for many commercial organizations, be they in financial services, manufacturing, retail, oil & gas, pharmaceuticals and so on, the hard choice remains whether to self-build or buy space in colo datacenters. For those where self-build has been ruled out for reasons of sheer capital expense and where HPC project timescales are just too short to warrant a dedicated facility, colocation seems inevitable. This then presents a further dilemma. There are many colos to choose from but the majority have insufficient power and cooling for HPC densities and inadequate back up and auxiliary power services to meet continuity requirements.

Faced with such constraints, some HPC users turn to the general public cloud as a scale-out option. However, public cloud is generally unsuitable for true HPC workloads despite cloud computing’s premise of elasticity for providing additional at-will compute resource for specific workloads.

Cloud may be fine for standard workloads where the amount of CPU, storage or network resources necessary for a specific workload are generally quite definable. However, with HPC it is considerably more complex as there is a need for different CPU and GPU server capabilities; for highly engineered interconnects between all the various systems and resources; for storage latencies to be maintained in the low milli, micro or even nanoseconds.  All of this requires highly specialised workload orchestration that is not available on general public cloud platforms.

Attempting to create a true HPC environment on top of a general public cloud is therefore untenable. So yet again, organizations tend to find themselves back at square one, deciding on or reverting to a self-build solution, or making the best of what colo has to offer. A real catch 22 situation!

Key colocation considerations for HPC users:

If the consensus is to take the colocation option the following decision criteria may serve as a useful guide:

Power

Hyper-dense HPC equipment needs high power densities, far more than the average colocation facility in Europe currently provides. The average power per rack for a ‘standard’ platform rarely exceeds 8kW per rack – in fact the average for colocation facilities is closer to 5kW. A dense HPC platform will typically draw around 12kW per rack and in some cases 30kW or more. Can the colocation facility provide that extra power now – not just promise it for the future?  Will it charge a premium price for routing more power to your system?  Furthermore, do the multi-cabled power aggregation systems required include sufficient power redundancy?

Careful consideration must therefore be given to future-proofing when it comes to power availability to avoid the potential for unplanned downtime, or the disruption and cost involved in the event of migration/de-installation should the facility become power-strapped. Clearly, PUE and carbon emissions credentials will also need evaluation from a cost, carbon tax and CSR perspective.

Back Up

There will always be some form of immediate failover power supply in place which is then replaced by auxiliary power from diesel generators.  However, such immediate power provision is expensive, particularly when there is a continuous high draw, as is required by HPC.  UPS and auxiliary power systems must be capable of supporting all workloads running in the facility at the same time, along with overhead and enough redundancy to deal with any failure within the emergency power supply system itself. This is not necessarily accommodated in colocation facilities looking to move up from general purpose applications and services to supporting true HPC environments.

Cooling

With HPC requiring highly targeted cooling, simple computer room air conditioning (CRAC) or free air cooling systems (such as swamp or adiabatic coolers) may not have the capabilities required.

Even where a modern HPC system may be using in-row cooling, so removing the need for adequate in-facility cooling, removing the heat generated in an effective manner may be a problem. Hot and Cold Aisle cooling systems are increasingly inadequate for addressing the heat created by larger HPC environments which will require specialized and often custom built cooling systems and procedures.

This places increased emphasis for ensuring there are on-site engineering personnel on hand with demonstrable knowledge in designing and building bespoke cooling systems such as direct liquid cooling for highly efficient heat removal and avoiding on board hot spots. This will reduce the problems of high temperatures without excessive air circulation which is both expensive and noisy.

Fiber Connectivity/Latency

Consider the availability of diverse high speed on-site fibre cross connects. Basic public connectivity solutions will generally not be sufficient for HPC systems so look for providers that have specialized connectivity solutions.

The HPC platform may be working well; all access devices may be working; the public internet is working.  However, what if the link between the organization or the public internet and the colocation facility goes down and there is no capability for failover?  As many problems with connectivity come down to physical damage, such as caused by cables being broken during roadworks, ensuring that connectivity is through multiple diverse connections from the facility is crucial.

Other areas where a colocation provider should be able to demonstrate capabilities include specialized connections to public clouds, such as Microsoft Azure ExpressRoute and AWS Direct Connect. These bypass the public internet to enable more consistent and secure interactions between the HPC platform and other workloads the organization may be operating.

Location

Last but not least, the physical location of the datacenter will impact directly on rack space costs and power availability. In the case of colocation there are often considerable differences in rack space rents between regional facilities and those based in or around large metro areas such as London. Perhaps of more concern to HPC users, the availability and reliability of power supply will likely vary from region to region. The majority are not directly connected to the grid and several pylon hops from sub-stations. Some facilities in power-strapped areas are already pushed to supply 4kW per rack.

Fortunately, the ever decreasing cost of high speed fiber is providing more freedom to build modern colo facilities much further away from metro areas but without incurring the latency issues of old. Examples here include locations such as the NGD mega data facility in South Wales, where renewable power is in abundant supply (180 MW) and is directly connected to the national grid; and of course some of the emerging facilities in the Nordic region where hydroelectric power is plentiful and low cost.

In summary, look closely enough and commercial HPC users will find a few fit for purpose colocation choices already available in the UK and Europe. Provided, that is, they carefully evaluate the ability of their would-be partners to guarantee the power and back up contingencies required for the duration of the project, and with high levels of redundancy on tap should needs suddenly change or for mitigating risk of any unplanned downtime. Ensuring the engineering team is capable of understanding and delivering bespoke rack configurations and specialized cooling environments is also a major prerequisite.

About the Author

Clive Longbottom is the founder and research director of Quocirca, the UK-based pan-European market analyst firm. Clive covers areas as diverse as storage, servers, operating systems, IT platforms, datacenters, systems management, on-line services, big data and analytics.

Trained as a Chemical Engineer, Clive understands that everything within a business is predicated on process, and that the only point of technology is in making sure that the processes run efficiently and smoothly.  As a research engineer for Johnson Matthey he worked on several projects, including anti-cancer drugs, efficient NoX/SoX burners and a long period working on primary energy generation via fuel cells.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU--and a refresh of its inference server software packaged as Read more…

By George Leopold

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

NSF Highlights Expanded Efforts for Broadening Participation in Computing

September 13, 2018

Today, the Directorate of Computer and Information Science and Engineering (CISE) of the NSF released a letter highlighting the expansion of its broadening participation in computing efforts. The letter was penned by Jam Read more…

By Staff

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This