HPC and the Colocation Datacenter – a Bridge Too Far?

By Clive Longbottom, Quocirca

April 7, 2017

In this guest commentary, industry analyst Clive Longbottom offers a European perspective on the current capability of colocation datacenters to meet the growing requirements of HPC users.

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. But this still leaves the dilemma of how organizations can cost-justify building dedicated datacenter facilities for supporting such platforms that may become surplus to requirement in just a year or two.

The obvious alternative is to turn to a colocation datacenter provider. However, in the UK and in many areas of Europe, the reality may not be quite so simple, as fit-for-purpose colocation facilities tend to be few and far between. HPC users will find it challenging to find colocation providers capable of meeting their specific and increasingly IoT-driven big data processing and analytical demands, especially when it comes to the powering and cooling of highly-dense and complex platforms.

Is the only answer therefore to either accept the risk of going colo, or continue building expensive in-house datacenters?

Perhaps for some, particularly the not-for-profit science research sector, a best of both worlds alternative is already available whereby HPC resources are shared. Certainly in the UK and some other countries in Europe such government backed solutions are on offer. For example, only last month it was announced that six UK universities are each to host HPC centers with $25 million of funding from the Engineering and Physical Sciences Research Council, a UK government body. This is to bridge the gap between the computing capabilities currently available to researchers in many UK universities and the state-of-the-art HPC resources accessible via the UK National Supercomputing Service (ARCHER).

But for many commercial organizations, be they in financial services, manufacturing, retail, oil & gas, pharmaceuticals and so on, the hard choice remains whether to self-build or buy space in colo datacenters. For those where self-build has been ruled out for reasons of sheer capital expense and where HPC project timescales are just too short to warrant a dedicated facility, colocation seems inevitable. This then presents a further dilemma. There are many colos to choose from but the majority have insufficient power and cooling for HPC densities and inadequate back up and auxiliary power services to meet continuity requirements.

Faced with such constraints, some HPC users turn to the general public cloud as a scale-out option. However, public cloud is generally unsuitable for true HPC workloads despite cloud computing’s premise of elasticity for providing additional at-will compute resource for specific workloads.

Cloud may be fine for standard workloads where the amount of CPU, storage or network resources necessary for a specific workload are generally quite definable. However, with HPC it is considerably more complex as there is a need for different CPU and GPU server capabilities; for highly engineered interconnects between all the various systems and resources; for storage latencies to be maintained in the low milli, micro or even nanoseconds.  All of this requires highly specialised workload orchestration that is not available on general public cloud platforms.

Attempting to create a true HPC environment on top of a general public cloud is therefore untenable. So yet again, organizations tend to find themselves back at square one, deciding on or reverting to a self-build solution, or making the best of what colo has to offer. A real catch 22 situation!

Key colocation considerations for HPC users:

If the consensus is to take the colocation option the following decision criteria may serve as a useful guide:

Power

Hyper-dense HPC equipment needs high power densities, far more than the average colocation facility in Europe currently provides. The average power per rack for a ‘standard’ platform rarely exceeds 8kW per rack – in fact the average for colocation facilities is closer to 5kW. A dense HPC platform will typically draw around 12kW per rack and in some cases 30kW or more. Can the colocation facility provide that extra power now – not just promise it for the future?  Will it charge a premium price for routing more power to your system?  Furthermore, do the multi-cabled power aggregation systems required include sufficient power redundancy?

Careful consideration must therefore be given to future-proofing when it comes to power availability to avoid the potential for unplanned downtime, or the disruption and cost involved in the event of migration/de-installation should the facility become power-strapped. Clearly, PUE and carbon emissions credentials will also need evaluation from a cost, carbon tax and CSR perspective.

Back Up

There will always be some form of immediate failover power supply in place which is then replaced by auxiliary power from diesel generators.  However, such immediate power provision is expensive, particularly when there is a continuous high draw, as is required by HPC.  UPS and auxiliary power systems must be capable of supporting all workloads running in the facility at the same time, along with overhead and enough redundancy to deal with any failure within the emergency power supply system itself. This is not necessarily accommodated in colocation facilities looking to move up from general purpose applications and services to supporting true HPC environments.

Cooling

With HPC requiring highly targeted cooling, simple computer room air conditioning (CRAC) or free air cooling systems (such as swamp or adiabatic coolers) may not have the capabilities required.

Even where a modern HPC system may be using in-row cooling, so removing the need for adequate in-facility cooling, removing the heat generated in an effective manner may be a problem. Hot and Cold Aisle cooling systems are increasingly inadequate for addressing the heat created by larger HPC environments which will require specialized and often custom built cooling systems and procedures.

This places increased emphasis for ensuring there are on-site engineering personnel on hand with demonstrable knowledge in designing and building bespoke cooling systems such as direct liquid cooling for highly efficient heat removal and avoiding on board hot spots. This will reduce the problems of high temperatures without excessive air circulation which is both expensive and noisy.

Fiber Connectivity/Latency

Consider the availability of diverse high speed on-site fibre cross connects. Basic public connectivity solutions will generally not be sufficient for HPC systems so look for providers that have specialized connectivity solutions.

The HPC platform may be working well; all access devices may be working; the public internet is working.  However, what if the link between the organization or the public internet and the colocation facility goes down and there is no capability for failover?  As many problems with connectivity come down to physical damage, such as caused by cables being broken during roadworks, ensuring that connectivity is through multiple diverse connections from the facility is crucial.

Other areas where a colocation provider should be able to demonstrate capabilities include specialized connections to public clouds, such as Microsoft Azure ExpressRoute and AWS Direct Connect. These bypass the public internet to enable more consistent and secure interactions between the HPC platform and other workloads the organization may be operating.

Location

Last but not least, the physical location of the datacenter will impact directly on rack space costs and power availability. In the case of colocation there are often considerable differences in rack space rents between regional facilities and those based in or around large metro areas such as London. Perhaps of more concern to HPC users, the availability and reliability of power supply will likely vary from region to region. The majority are not directly connected to the grid and several pylon hops from sub-stations. Some facilities in power-strapped areas are already pushed to supply 4kW per rack.

Fortunately, the ever decreasing cost of high speed fiber is providing more freedom to build modern colo facilities much further away from metro areas but without incurring the latency issues of old. Examples here include locations such as the NGD mega data facility in South Wales, where renewable power is in abundant supply (180 MW) and is directly connected to the national grid; and of course some of the emerging facilities in the Nordic region where hydroelectric power is plentiful and low cost.

In summary, look closely enough and commercial HPC users will find a few fit for purpose colocation choices already available in the UK and Europe. Provided, that is, they carefully evaluate the ability of their would-be partners to guarantee the power and back up contingencies required for the duration of the project, and with high levels of redundancy on tap should needs suddenly change or for mitigating risk of any unplanned downtime. Ensuring the engineering team is capable of understanding and delivering bespoke rack configurations and specialized cooling environments is also a major prerequisite.

About the Author

Clive Longbottom is the founder and research director of Quocirca, the UK-based pan-European market analyst firm. Clive covers areas as diverse as storage, servers, operating systems, IT platforms, datacenters, systems management, on-line services, big data and analytics.

Trained as a Chemical Engineer, Clive understands that everything within a business is predicated on process, and that the only point of technology is in making sure that the processes run efficiently and smoothly.  As a research engineer for Johnson Matthey he worked on several projects, including anti-cancer drugs, efficient NoX/SoX burners and a long period working on primary energy generation via fuel cells.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire