Nvidia Responds to Google TPU Benchmarking

By Tiffany Trader

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia’s K80 GPU (see our coverage, Google Pulls Back the Covers on Its First Machine Learning Chip), and it didn’t take Nvidia long to respond. Unlike the semi-contentious back-and-forth between Nvidia and Intel over benchmarking methodology (see Nvidia Cries Foul on Intel Phi AI Benchmarks), Nvidia took a decidedly more friendly approach in responding to Google. Google of course is a big buyer of Nvidia gear – both for internal neural net training workloads and for accelerating HPC and AI workloads inside its Google Compute Engine cloud.

Responding in a blog post published earlier today, Nvidia is choosing to frame the recent TPU results not as a potential competitive threat, but as as a clear sign of the ascendancy of accelerated computing. “Without accelerated computing, the scale-out of AI is simply not practical,” is the conclusion that Nvidia draws.

“While Google and Nvidia chose different development paths, there were several themes common to both our approaches,” observed Nvidia CEO Jen-Hsun Huang, noting:

  • AI requires accelerated computing. Accelerators provide the significant data processing demands of deep learning in an era when Moore’s law is slowing.
  • Tensor processing is at the core of delivering performance for deep learning training and inference.
  • Tensor processing is a major new workload enterprises must consider when building modern data centers.
  • Accelerating tensor processing can dramatically reduce the cost of building modern data centers.

Nvidia heartily applauds Google for its AI successes (“The startling precision of its Google Now service; the landmark victory over the world’s greatest Go player; Google Translate’s ability to operate in 100 different languages”), but also makes sure to highlight how its GPU technology has progressed since the 2015-timeframe when the TPU was deployed in Google datacenters.

In September 2016, Google released the P40 GPU, based on the Pascal architecture, to accelerate inferencing workloads for modern AI applications, such as speech translation and video analysis. Recall that Google benchmarked the TPU against the older (late 2014-era) K80 GPU, based on the Kepler architecture, which debuted in 2012. Nvidia created the following chart to “quantify the performance leap from K80 to P40, and to show how the TPU compares to current NVIDIA technology.”

The Google paper, scrupulous in exploring potential criticisms to its methodology, references the newer P40 silicon, noting 1) “the…P40 was unavailable in early 2015, so isn’t contemporary with our [TPU]”; 2) “We also can’t know the fraction of P40 peak delivered within our rigid time bounds”; and 3) “If we compared newer chips, Section 7 shows that we could triple performance of the…TPU just by using the K80’s GDDR5 memory (at a cost of an additional 10W).”

Based on TDP specs, the TPU is more efficient than the P40 on an operations-per-watt basis by a 6.2X margin (for 8-bit inferencing workloads).

Google cited other reasons to indicate that the TPU is “not an easy target” (refer to Section 7 of the paper, “Evaluation of Alternative TPU Designs”), but keep in mind the TPU can only satisfy inferencing workloads. The training phase of deep learning is far more complicated and GPUs have the lead currently.

Nvidia emphasizes the P40’s ability to accelerate both phases of deep learning:

“The P40 balances computational precision and throughput, on-chip memory and memory bandwidth to achieve unprecedented performance for training, as well as inferencing. For training, P40 has 10x the bandwidth and 12 teraflops of 32-bit floating point performance. For inferencing, P40 has high-throughput 8-bit integer and high-memory bandwidth,” Nvidia states.

Is it surprising that Google, a company without a track record in chip manufacturing, can design a processor to rival or surpass a leading silicon vendor such as Nvidia? With sufficiently deep pockets, anyone can create a custom ASIC that beats general-purpose hardware for a narrow application. The question is whether the strategy will pay off. With deep learning algorithms still evolving at light speed, it can be risky to lock down hardware functionality if you’ll need to change out the silicon a year later, when the algorithms refresh. But Google, running the largest compute infrastructure in the world, is a special case that can mine physical scales of economy even if it isn’t able to amortize the outlay over very long periods. Google hinted that a successor to “this first generation” of TPUs is in the works and may even be working on a third-gen for all we know. The company that gave the world MapReduce and TensorFlow is widely known for innovating far ahead of what it makes public.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly wh Read more…

By James Reinders

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This