Nvidia Responds to Google TPU Benchmarking

By Tiffany Trader

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia’s K80 GPU (see our coverage, Google Pulls Back the Covers on Its First Machine Learning Chip), and it didn’t take Nvidia long to respond. Unlike the semi-contentious back-and-forth between Nvidia and Intel over benchmarking methodology (see Nvidia Cries Foul on Intel Phi AI Benchmarks), Nvidia took a decidedly more friendly approach in responding to Google. Google of course is a big buyer of Nvidia gear – both for internal neural net training workloads and for accelerating HPC and AI workloads inside its Google Compute Engine cloud.

Responding in a blog post published earlier today, Nvidia is choosing to frame the recent TPU results not as a potential competitive threat, but as as a clear sign of the ascendancy of accelerated computing. “Without accelerated computing, the scale-out of AI is simply not practical,” is the conclusion that Nvidia draws.

“While Google and Nvidia chose different development paths, there were several themes common to both our approaches,” observed Nvidia CEO Jen-Hsun Huang, noting:

  • AI requires accelerated computing. Accelerators provide the significant data processing demands of deep learning in an era when Moore’s law is slowing.
  • Tensor processing is at the core of delivering performance for deep learning training and inference.
  • Tensor processing is a major new workload enterprises must consider when building modern data centers.
  • Accelerating tensor processing can dramatically reduce the cost of building modern data centers.

Nvidia heartily applauds Google for its AI successes (“The startling precision of its Google Now service; the landmark victory over the world’s greatest Go player; Google Translate’s ability to operate in 100 different languages”), but also makes sure to highlight how its GPU technology has progressed since the 2015-timeframe when the TPU was deployed in Google datacenters.

In September 2016, Google released the P40 GPU, based on the Pascal architecture, to accelerate inferencing workloads for modern AI applications, such as speech translation and video analysis. Recall that Google benchmarked the TPU against the older (late 2014-era) K80 GPU, based on the Kepler architecture, which debuted in 2012. Nvidia created the following chart to “quantify the performance leap from K80 to P40, and to show how the TPU compares to current NVIDIA technology.”

The Google paper, scrupulous in exploring potential criticisms to its methodology, references the newer P40 silicon, noting 1) “the…P40 was unavailable in early 2015, so isn’t contemporary with our [TPU]”; 2) “We also can’t know the fraction of P40 peak delivered within our rigid time bounds”; and 3) “If we compared newer chips, Section 7 shows that we could triple performance of the…TPU just by using the K80’s GDDR5 memory (at a cost of an additional 10W).”

Based on TDP specs, the TPU is more efficient than the P40 on an operations-per-watt basis by a 6.2X margin (for 8-bit inferencing workloads).

Google cited other reasons to indicate that the TPU is “not an easy target” (refer to Section 7 of the paper, “Evaluation of Alternative TPU Designs”), but keep in mind the TPU can only satisfy inferencing workloads. The training phase of deep learning is far more complicated and GPUs have the lead currently.

Nvidia emphasizes the P40’s ability to accelerate both phases of deep learning:

“The P40 balances computational precision and throughput, on-chip memory and memory bandwidth to achieve unprecedented performance for training, as well as inferencing. For training, P40 has 10x the bandwidth and 12 teraflops of 32-bit floating point performance. For inferencing, P40 has high-throughput 8-bit integer and high-memory bandwidth,” Nvidia states.

Is it surprising that Google, a company without a track record in chip manufacturing, can design a processor to rival or surpass a leading silicon vendor such as Nvidia? With sufficiently deep pockets, anyone can create a custom ASIC that beats general-purpose hardware for a narrow application. The question is whether the strategy will pay off. With deep learning algorithms still evolving at light speed, it can be risky to lock down hardware functionality if you’ll need to change out the silicon a year later, when the algorithms refresh. But Google, running the largest compute infrastructure in the world, is a special case that can mine physical scales of economy even if it isn’t able to amortize the outlay over very long periods. Google hinted that a successor to “this first generation” of TPUs is in the works and may even be working on a third-gen for all we know. The company that gave the world MapReduce and TensorFlow is widely known for innovating far ahead of what it makes public.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This