Penguin Takes a Run at the Big Cloud Providers

By John Russell

April 12, 2017

Fighting for sway among the big HPC-in-the-cloud providers – AWS, Azure, etc. – is challenging for smaller players. The giants own the mindshare. HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. The natural caveat here is Penguin ran the tests. The company says the tests accurately recreate those in the study and that it is willing to let prospects or third parties run the tests for themselves at no charge.

A marketing exercise? Of course. The Penguin effort was in response to a paper – Comparative benchmarking of cloud computing vendors with High Performance Linpack – authored by Exabyte.io and posted on arXiv.org last month. But besides simply being an effort by Penguin to gain user attention and push its way more forcefully into the land of giants such as Microsoft, Google, AWS, and IBM/SoftLayer, and Rackspace, all examined in the paper, the effort also reveals the growing competitive zeal among many providers to offer HPC in the cloud.

Where Microsoft Azure was the top performer in the original study, Penguin reports that POD comes out ahead in the new benchmarking it performed on both price and performance measures. Penguin, according to its measurements, takes the lead in terms of Linpack gigaflops-per-core, Linpack gigaflops-per-node and has it has the most favorable speedup at scale.

To some extent one would expect Penguin to outperform public cloud providers. POD is best characterized as an on-demand HPC cluster rather than a typical public cloud. It is a tightly coupled environment (with the option of OmniPath 100Gb/s interconnect, which was used for this testing). Definitional nuances aside, the bigger takeaway, if accurate, may be the POD is cheaper for HPC workloads than the major cloud players.

HPCwire covered the earlier paper (see, Azure Edges AWS in Linpack Benchmark Study). In it, performances varied with Azure besting the pack, which included a NERSC run. The primary purpose of the study was to demonstrate whether or not HPC workloads can be reliably and cost-effectively run in the cloud. Using the high performance Linpack as the performance metric and a cost comparison with traditional infrastructure, the authors’ answer is an unqualified yes.

“We benchmarked the performance of the best available computing hardware from public cloud providers with high performance Linpack. We optimized the benchmark for each computing environment and evaluated the relative performance for distributed memory calculations…Based on our findings we suggest that the concept of high performance computing in the cloud is ready for a widespread adoption and can provide a viable and cost-efficient alternative to capital-intensive on-premises hardware deployments,” write the authors, Mohammad Mohammadi, Timur Bazhirov of Exabyte.io.

Penguin, of course, is well known for its HPC expertise and Tundra servers. In November the company had seven systems on the Top500. Not surprisingly, the POD offering is HPC-centric. “We recognize the need for high performance nodes with modern processors, bare metal, non-blocking fabric, the kind of infrastructure you would design if you were building a large scale HPC cluster in house,” says Victor Gregorio, Sr. VP of Cloud Services.

POD provides two locations for cloud computing that can be accessed through a single POD Portal, MT1 and MT2. Each location has localized storage, and high-speed interconnects between the sites to facilitate easy migration of data from one location to another.

Login nodes and storage volumes (user home directories) are local to each location, but usernames are global to all of POD’s locations. The POD Portal’s usage reports are global to all POD locations.

The tests were run at the MT2 datacenter on POD’s B30 nodes, which feature Intel Broadwell E5-2680 v4 processors (2.4Ghz, 14 cores, 16 double precision Flops/cycle) and deliver 1.07 Tflops peak per node. The MT2 location uses Intel OmniPath interconnect. The other clouds in the study do not have the current highest-end networking, although the Azure nodes (AZ-A and AZ-H) and NERSC Edison do employ high-speed interconnects (40Gbs InfiniBand and Cray Aries respectively) — details of the various node architectures/processors are best gleaned from the Exabyte.io paper.

As shown in the table and figures below, Penguin argues POD performs on par with the best of the big providers and that its costs are less, at least as evaluated in the study.

By this comparison, POD consistently performed at or near the top with performance scaling well with increased node/core count. The cost comparison is even more disparate, despite POD having a significantly higher initial rate per node, $2.80 per node hour versus the highest cost of the majors, $1.90/node/hour for the Azure IB-A node. Buyer beware: Penguin compared publicly disclosed rates and did not factor in potential discounts.

Source: Penguin Computing

 

Source: Penguin Computing

The cost reduction drivers, according to Penguin, include higher performance, reduced wall clock time, fine grain metering down to roughly three seconds versus rounding up to the nearest hour used, and the lack of many common additional charges such as data transfer, bandwidth, set-up, etc.

“You are not billed for idle time, you are only billed for compute time. But the biggest thing is the other cloud vendors will round up to the hour,” he says. A job that ran 90 minutes would cost the same as one that ran 61 minutes or 62 minutes in billing schemes that round up. Most jobs, he notes, are not nicely divisible by hours. Penguin meters down to roughly three seconds of use. “When you look at what I feel is a real-world situation we are clearly more cost-effective than other providers for HPC workloads,” Gregorio says.

Currently, there are five different queues on POD, each pointing to a cluster with different resources and capabilities. Lower performing environments are lower cost. That said, all of them have been designed for HPC workloads according to Gregorio.

Penguin doesn’t say much about the size of the POD customer base. Sid Mair, SVP, Federal Systems, emphasized POD is the fastest growing part of the company and that its customers are not drawn only from existing Penguin customers for on-premises equipment and services. One POD customer is running multi-thousand core jobs, he says while there’s a university with on the order of 300 students submitting “tiny” jobs daily. Weather forecasting, automotive, and traditional engineering disciplines are all represented. Gregorio considers a 4,000-core job to be a big one.

“Almost every HPC application on the market place runs on POD and many of them are already loaded in the environment we use. We have many relationships where customers transfer their corporate licenses right into POD rather than have to worry about managing them,” says Gregorio, adding the list of applications on the web-site slightly lags their ongoing efforts add more applications and tools. Most of the familiar names are already there such as ANSYS, Dassult Systems, and MathWorks.

Perhaps surprisingly, the GPU node offering (NVIDIA K40) is modest when compared to recent aggressive adoption of K80 and P100 devices by the major cloud players. Gregorio says Penguin is demand-driven and able to scale as the need arises.

“As we see demand in the market place for things like deep learning, we’ll adopt it. We are currently working with a number of customers for on-premises deep learning/machine learning environments and we’re using that experience to understand the needs for optimal HPC environment in the cloud. We aren’t ready to publicly disclose our plans yet,” says Gregorio.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This