Penguin Takes a Run at the Big Cloud Providers

By John Russell

April 12, 2017

Fighting for sway among the big HPC-in-the-cloud providers – AWS, Azure, etc. – is challenging for smaller players. The giants own the mindshare. HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. The natural caveat here is Penguin ran the tests. The company says the tests accurately recreate those in the study and that it is willing to let prospects or third parties run the tests for themselves at no charge.

A marketing exercise? Of course. The Penguin effort was in response to a paper – Comparative benchmarking of cloud computing vendors with High Performance Linpack – authored by Exabyte.io and posted on arXiv.org last month. But besides simply being an effort by Penguin to gain user attention and push its way more forcefully into the land of giants such as Microsoft, Google, AWS, and IBM/SoftLayer, and Rackspace, all examined in the paper, the effort also reveals the growing competitive zeal among many providers to offer HPC in the cloud.

Where Microsoft Azure was the top performer in the original study, Penguin reports that POD comes out ahead in the new benchmarking it performed on both price and performance measures. Penguin, according to its measurements, takes the lead in terms of Linpack gigaflops-per-core, Linpack gigaflops-per-node and has it has the most favorable speedup at scale.

To some extent one would expect Penguin to outperform public cloud providers. POD is best characterized as an on-demand HPC cluster rather than a typical public cloud. It is a tightly coupled environment (with the option of OmniPath 100Gb/s interconnect, which was used for this testing). Definitional nuances aside, the bigger takeaway, if accurate, may be the POD is cheaper for HPC workloads than the major cloud players.

HPCwire covered the earlier paper (see, Azure Edges AWS in Linpack Benchmark Study). In it, performances varied with Azure besting the pack, which included a NERSC run. The primary purpose of the study was to demonstrate whether or not HPC workloads can be reliably and cost-effectively run in the cloud. Using the high performance Linpack as the performance metric and a cost comparison with traditional infrastructure, the authors’ answer is an unqualified yes.

“We benchmarked the performance of the best available computing hardware from public cloud providers with high performance Linpack. We optimized the benchmark for each computing environment and evaluated the relative performance for distributed memory calculations…Based on our findings we suggest that the concept of high performance computing in the cloud is ready for a widespread adoption and can provide a viable and cost-efficient alternative to capital-intensive on-premises hardware deployments,” write the authors, Mohammad Mohammadi, Timur Bazhirov of Exabyte.io.

Penguin, of course, is well known for its HPC expertise and Tundra servers. In November the company had seven systems on the Top500. Not surprisingly, the POD offering is HPC-centric. “We recognize the need for high performance nodes with modern processors, bare metal, non-blocking fabric, the kind of infrastructure you would design if you were building a large scale HPC cluster in house,” says Victor Gregorio, Sr. VP of Cloud Services.

POD provides two locations for cloud computing that can be accessed through a single POD Portal, MT1 and MT2. Each location has localized storage, and high-speed interconnects between the sites to facilitate easy migration of data from one location to another.

Login nodes and storage volumes (user home directories) are local to each location, but usernames are global to all of POD’s locations. The POD Portal’s usage reports are global to all POD locations.

The tests were run at the MT2 datacenter on POD’s B30 nodes, which feature Intel Broadwell E5-2680 v4 processors (2.4Ghz, 14 cores, 16 double precision Flops/cycle) and deliver 1.07 Tflops peak per node. The MT2 location uses Intel OmniPath interconnect. The other clouds in the study do not have the current highest-end networking, although the Azure nodes (AZ-A and AZ-H) and NERSC Edison do employ high-speed interconnects (40Gbs InfiniBand and Cray Aries respectively) — details of the various node architectures/processors are best gleaned from the Exabyte.io paper.

As shown in the table and figures below, Penguin argues POD performs on par with the best of the big providers and that its costs are less, at least as evaluated in the study.

By this comparison, POD consistently performed at or near the top with performance scaling well with increased node/core count. The cost comparison is even more disparate, despite POD having a significantly higher initial rate per node, $2.80 per node hour versus the highest cost of the majors, $1.90/node/hour for the Azure IB-A node. Buyer beware: Penguin compared publicly disclosed rates and did not factor in potential discounts.

Source: Penguin Computing

 

Source: Penguin Computing

The cost reduction drivers, according to Penguin, include higher performance, reduced wall clock time, fine grain metering down to roughly three seconds versus rounding up to the nearest hour used, and the lack of many common additional charges such as data transfer, bandwidth, set-up, etc.

“You are not billed for idle time, you are only billed for compute time. But the biggest thing is the other cloud vendors will round up to the hour,” he says. A job that ran 90 minutes would cost the same as one that ran 61 minutes or 62 minutes in billing schemes that round up. Most jobs, he notes, are not nicely divisible by hours. Penguin meters down to roughly three seconds of use. “When you look at what I feel is a real-world situation we are clearly more cost-effective than other providers for HPC workloads,” Gregorio says.

Currently, there are five different queues on POD, each pointing to a cluster with different resources and capabilities. Lower performing environments are lower cost. That said, all of them have been designed for HPC workloads according to Gregorio.

Penguin doesn’t say much about the size of the POD customer base. Sid Mair, SVP, Federal Systems, emphasized POD is the fastest growing part of the company and that its customers are not drawn only from existing Penguin customers for on-premises equipment and services. One POD customer is running multi-thousand core jobs, he says while there’s a university with on the order of 300 students submitting “tiny” jobs daily. Weather forecasting, automotive, and traditional engineering disciplines are all represented. Gregorio considers a 4,000-core job to be a big one.

“Almost every HPC application on the market place runs on POD and many of them are already loaded in the environment we use. We have many relationships where customers transfer their corporate licenses right into POD rather than have to worry about managing them,” says Gregorio, adding the list of applications on the web-site slightly lags their ongoing efforts add more applications and tools. Most of the familiar names are already there such as ANSYS, Dassult Systems, and MathWorks.

Perhaps surprisingly, the GPU node offering (NVIDIA K40) is modest when compared to recent aggressive adoption of K80 and P100 devices by the major cloud players. Gregorio says Penguin is demand-driven and able to scale as the need arises.

“As we see demand in the market place for things like deep learning, we’ll adopt it. We are currently working with a number of customers for on-premises deep learning/machine learning environments and we’re using that experience to understand the needs for optimal HPC environment in the cloud. We aren’t ready to publicly disclose our plans yet,” says Gregorio.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire