CERN openlab Explores New CPU/FPGA Processing Solutions

By Linda Barney

April 14, 2017

Editor’s note: In this contributed feature, Linda Barney describes the ongoing technical collaboration between CERN and Intel to develop a co-packaged Xeon/FPGA processor.

At CERN, the European Organization for Nuclear Research, physicists and engineers are probing the fundamental structure of the universe. The Large Hadron Collider (LHC), which began working in 2008, is the world’s largest and most powerful particle accelerator; it is housed in an underground tunnel at CERN. Niko Neufeld is a deputy project leader at CERN who works on the Large Hadron Collider beauty (LHCb) experiment, which explores what happened after the Big Bang that allowed matter to survive and build the Universe we inhabit today.

“CERN experiments produce an enormous amount of data with forty million proton collisions every second, which leads to primary data rates of terabits per second,” says Neufeld when speaking on a recent FPGA vs. CPU panel. “This is an enormous amount of data and there are a number of technical challenges in our work. We use a number of processing solutions including central processing units (CPUs), field-programmable gate arrays (FPGAs), and graphic processing units (GPUs), but each of these solutions have some limitations. We are collaborating with Intel in experimenting with a co-packaged Intel Xeon processor plus FPGA Quick Path Interconnect (QPI) processor in our LHCb research to try to determine which technology provides the best results.”

CERN collaborates with leading ICT companies and other research institutes through a unique public-private partnership known as ‘CERN openlab’. Its goal is to accelerate the development of cutting-edge solutions for the worldwide LHC community and wider scientific research. Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems.

Figure 1. CERN researchers shown in the Large Hadron Collider tunnel in front of the LHCb detector. Courtesy of CERN (courtesty CERN).

Introducing the co-packaged Intel CPU / FPGA Processor

Today the CPU and FPGA are used as discrete chips in a solution – with an Intel Xeon processor and an FPGA which is typically attached via a PCIe interconnect to the CPU. And the development environment is also discrete using independent development tools from Intel and tools such as OpenCL and C++. Intel is working toward a common workflow and development flow to better integrate FPGAs.

“FPGA typically uses a higher level machine abstraction language (such as Verilog and VHDL) which have a painful low-level hardware programming model for most people. As a next step, Intel has a solution that co-packages the CPU and FPGA in the same Multichip Chip Product (MCP) package to deliver higher performance and lower latency than a discrete solution,” states Bill Jenkins, Intel Senior AI Marketing Manager. The Intel MCP is supported by a cross-platform development framework like OpenCL that can be used to develop applications for both the CPU and FPGA. The Intel solution includes a fully unified intellectual property (IP) and development suite, including languages, libraries and development environments. The roadmap to a unified development flow leverages common tools and libraries to support both FPGA and Intel Xeon processor + FPGA systems along with an expansive ecosystem network of Intel and vendors working on independent development tools for demanding workloads such as HPC, imaging identification, security and big data.

Abstracting away FPGA Coding

Intel is building an abstraction layer (as part of the product containing the Intel CPU and FPGA in the same MCP package), called the Orchestration Software layer. This layer and the higher level IP and software models help make development less complex so that developers don’t need to code specifically to the FPGA. The FPGA-enabled Orchestration software layer abstracts away the API to communicate with the FPGA as shown in the following example.

Figure 2. Example of Intel implementation of user IP implemented into FPGA via an abstraction Orchestration software layer

There is a cloud-based library of functions and end-user IP that have been pre-compiled and built that is loaded into the FPGA at runtime. The user first launches a workload from the host and it goes into the Orchestration software which pushes a function into the FPGA. This produces a bitstream that is pre-compiled on the FPGA to bring the data in—it is almost like a fixed architecture I/O interface.

In the example scenario, users simply download the image from the abstraction Orchestration software layer to the FPGA and it is ready to run without compilation. “With the abstraction Orchestration software layer,” Jenkins explained, “Intel is abstracting away all the difficulties of FPGA programming using machine language tools while enabling all the higher level Intel frameworks including the Intel Trusted Analytics Platform (TAP) and Intel Scalable System Framework (SSI) and tying the FPGA into the frameworks. Intel is developing this approach for a variety of markets including visual understanding, analytics, enterprise, Network Function Virtualization (NFV), VPN, genomics, HPC and storage.”

Large Hadron Collider High-Energy Physics Research at CERN

Neufeld indicates that the experiments at CERN — through what they refer to as ‘online computing’ — require a first-level data-filtering to reduce the data to an amount that can be stored and processed on more traditional processing units such as Intel Xeon processors. Figure 3 shows a schematic view of the future LHCb readout system. At the top level, there is a detector and optical fiber links, which transfer data out of the detector. CERN uses FPGAs to acquire data from the detector. There are also large switching fabrics, as well as clusters of processing elements including CPUs, FPGAs, and GPUs to reduce the amount of data. One of the questions the CERN team is testing is “Which technologies should we use and which provide the best performance and lowest energy usage results?”

Figure 3. Schematic diagram showing future LHCb first-level data-filtering system. Courtesy of CERN.

CERN Tests Complex Cherenkov Angle Reconstruction Calculation

CERN has extensive experience using FPGAs in their research work. “We typically use FPGAs in our research to run algorithms looking for simple integer signatures, or for other less complicated calculations. When we heard about the Intel Xeon / FPGA combined processor, we chose a test using a complex algorithm to do a Cherenkov angle reconstruction of light emission in a particle detector, which is not typically performed on an FPGA. This involves tracing a light particle — photon — through a complex arrangement of optical reflection and deflection systems. Our test case used a rich PID algorithm to calculate the Cherenkov angle for each track and detection point. This is a complex mathematical calculation that involves hyperbolic functions, roots, square roots, etc., as shown in Figure 4. It is one of the most costly calculations done in online reconstruction,” states Neufeld.

Figure 4. Test case running Rich PID algorithm to calculate Cherenkov angle. Courtesy of CERN.

Coding the Cherenkov Angle Reconstruction in Verilog versus OpenCL

The CERN team first implemented the Cherenkov angle reconstruction by coding it in the Verilog HDL. The team wrote a 748 clock-cycle long pipeline in Verilog, along with additional blocks developed for the test including: cubic root, complex square root, rotational matrix, and cross/scalar product. It was a lengthy task doing this coding in Verilog with 3,400 lines of code. With all test benches, the implementation took 2.5 months.

Next, the team recoded the Cherenkov angle code using the OpenCL and the BSP (board support package) designed to work across a variety of hardware platforms. Because OpenCL is an abstraction language, it required only 250 lines of code and took two weeks of coding. Not only was coding in OpenCL much faster but the performance results were similar. Figure 5 shows the results of the Verilog versus OpenCL implementation.

Figure 5. Result of Verilog (CQRT) versus OpenCL (RICH) code and performance. Courtesy of CERN.

CERN Compares Co-packaged Intel Xeon – FPGA Processor against Nallatech PCIe Stratix V FPGA Board

To test performance of the Verilog code, the CERN team used a commercially available Stratix V GXA7 FPGA board / Nallatech 385 board for testing. They achieved an acceleration of a factor up to six with the Stratix – Nallatech PCIe board. However, they found a bottleneck in data transfer—they could not keep the pipeline busy because the PCIe card was limited to an eight-lane interface. Next, the CERN team did tests with the Cherenkov angle code comparing a Nallatech FPGA Board with the co-packaged Intel Xeon/FPGA QPI processor.

Finally, the CERN team tested an Intel Xeon CPU, PCIe Stratix V FPGA and Intel Xeon processor/Stratix V QPI (where only the interconnect was different). As shown in Figure 6, there was a factor of 9 speed up for the PCIe Stratix V FPGA and a 26 factor speed up for the Intel Xeon processor/Stratix V QPI with the faster interconnect.

Figure 6. Test results from the CERN team comparing Intel Xeon CPU, PCIe Stratix V FPGA and Intel Xeon processor/FPGA QPI. Courtesy of CERN.

CERN Plans to do Future Testing using co-packaged Intel Xeon/ Intel Arria10 FPGA Processor

“Our CERN team found the results of using the co-packaged Intel Xeon processor/Stratix V QPI processors to be very encouraging. In addition, we find the programming model with OpenCL attractive and it will be mandatory for the High-Energy Physics (HEP) field. Intel will be launching a co-packaged Intel Xeon processor / Intel Arria 10 FPGA processor in the future. We want to do other experiments with the co-packaged Intel Xeon processor/ Arria 10 FPGA. We expect that the high-bandwidth interconnect and modern Arria 10 FPGA card will provide high performance and performance per Joule for HEP algorithms,” states Neufeld.

Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training and web design firm in Beaverton, OR.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This