CERN openlab Explores New CPU/FPGA Processing Solutions

By Linda Barney

April 14, 2017

Editor’s note: In this contributed feature, Linda Barney describes the ongoing technical collaboration between CERN and Intel to develop a co-packaged Xeon/FPGA processor.

At CERN, the European Organization for Nuclear Research, physicists and engineers are probing the fundamental structure of the universe. The Large Hadron Collider (LHC), which began working in 2008, is the world’s largest and most powerful particle accelerator; it is housed in an underground tunnel at CERN. Niko Neufeld is a deputy project leader at CERN who works on the Large Hadron Collider beauty (LHCb) experiment, which explores what happened after the Big Bang that allowed matter to survive and build the Universe we inhabit today.

“CERN experiments produce an enormous amount of data with forty million proton collisions every second, which leads to primary data rates of terabits per second,” says Neufeld when speaking on a recent FPGA vs. CPU panel. “This is an enormous amount of data and there are a number of technical challenges in our work. We use a number of processing solutions including central processing units (CPUs), field-programmable gate arrays (FPGAs), and graphic processing units (GPUs), but each of these solutions have some limitations. We are collaborating with Intel in experimenting with a co-packaged Intel Xeon processor plus FPGA Quick Path Interconnect (QPI) processor in our LHCb research to try to determine which technology provides the best results.”

CERN collaborates with leading ICT companies and other research institutes through a unique public-private partnership known as ‘CERN openlab’. Its goal is to accelerate the development of cutting-edge solutions for the worldwide LHC community and wider scientific research. Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems.

Figure 1. CERN researchers shown in the Large Hadron Collider tunnel in front of the LHCb detector. Courtesy of CERN (courtesty CERN).

Introducing the co-packaged Intel CPU / FPGA Processor

Today the CPU and FPGA are used as discrete chips in a solution – with an Intel Xeon processor and an FPGA which is typically attached via a PCIe interconnect to the CPU. And the development environment is also discrete using independent development tools from Intel and tools such as OpenCL and C++. Intel is working toward a common workflow and development flow to better integrate FPGAs.

“FPGA typically uses a higher level machine abstraction language (such as Verilog and VHDL) which have a painful low-level hardware programming model for most people. As a next step, Intel has a solution that co-packages the CPU and FPGA in the same Multichip Chip Product (MCP) package to deliver higher performance and lower latency than a discrete solution,” states Bill Jenkins, Intel Senior AI Marketing Manager. The Intel MCP is supported by a cross-platform development framework like OpenCL that can be used to develop applications for both the CPU and FPGA. The Intel solution includes a fully unified intellectual property (IP) and development suite, including languages, libraries and development environments. The roadmap to a unified development flow leverages common tools and libraries to support both FPGA and Intel Xeon processor + FPGA systems along with an expansive ecosystem network of Intel and vendors working on independent development tools for demanding workloads such as HPC, imaging identification, security and big data.

Abstracting away FPGA Coding

Intel is building an abstraction layer (as part of the product containing the Intel CPU and FPGA in the same MCP package), called the Orchestration Software layer. This layer and the higher level IP and software models help make development less complex so that developers don’t need to code specifically to the FPGA. The FPGA-enabled Orchestration software layer abstracts away the API to communicate with the FPGA as shown in the following example.

Figure 2. Example of Intel implementation of user IP implemented into FPGA via an abstraction Orchestration software layer

There is a cloud-based library of functions and end-user IP that have been pre-compiled and built that is loaded into the FPGA at runtime. The user first launches a workload from the host and it goes into the Orchestration software which pushes a function into the FPGA. This produces a bitstream that is pre-compiled on the FPGA to bring the data in—it is almost like a fixed architecture I/O interface.

In the example scenario, users simply download the image from the abstraction Orchestration software layer to the FPGA and it is ready to run without compilation. “With the abstraction Orchestration software layer,” Jenkins explained, “Intel is abstracting away all the difficulties of FPGA programming using machine language tools while enabling all the higher level Intel frameworks including the Intel Trusted Analytics Platform (TAP) and Intel Scalable System Framework (SSI) and tying the FPGA into the frameworks. Intel is developing this approach for a variety of markets including visual understanding, analytics, enterprise, Network Function Virtualization (NFV), VPN, genomics, HPC and storage.”

Large Hadron Collider High-Energy Physics Research at CERN

Neufeld indicates that the experiments at CERN — through what they refer to as ‘online computing’ — require a first-level data-filtering to reduce the data to an amount that can be stored and processed on more traditional processing units such as Intel Xeon processors. Figure 3 shows a schematic view of the future LHCb readout system. At the top level, there is a detector and optical fiber links, which transfer data out of the detector. CERN uses FPGAs to acquire data from the detector. There are also large switching fabrics, as well as clusters of processing elements including CPUs, FPGAs, and GPUs to reduce the amount of data. One of the questions the CERN team is testing is “Which technologies should we use and which provide the best performance and lowest energy usage results?”

Figure 3. Schematic diagram showing future LHCb first-level data-filtering system. Courtesy of CERN.

CERN Tests Complex Cherenkov Angle Reconstruction Calculation

CERN has extensive experience using FPGAs in their research work. “We typically use FPGAs in our research to run algorithms looking for simple integer signatures, or for other less complicated calculations. When we heard about the Intel Xeon / FPGA combined processor, we chose a test using a complex algorithm to do a Cherenkov angle reconstruction of light emission in a particle detector, which is not typically performed on an FPGA. This involves tracing a light particle — photon — through a complex arrangement of optical reflection and deflection systems. Our test case used a rich PID algorithm to calculate the Cherenkov angle for each track and detection point. This is a complex mathematical calculation that involves hyperbolic functions, roots, square roots, etc., as shown in Figure 4. It is one of the most costly calculations done in online reconstruction,” states Neufeld.

Figure 4. Test case running Rich PID algorithm to calculate Cherenkov angle. Courtesy of CERN.

Coding the Cherenkov Angle Reconstruction in Verilog versus OpenCL

The CERN team first implemented the Cherenkov angle reconstruction by coding it in the Verilog HDL. The team wrote a 748 clock-cycle long pipeline in Verilog, along with additional blocks developed for the test including: cubic root, complex square root, rotational matrix, and cross/scalar product. It was a lengthy task doing this coding in Verilog with 3,400 lines of code. With all test benches, the implementation took 2.5 months.

Next, the team recoded the Cherenkov angle code using the OpenCL and the BSP (board support package) designed to work across a variety of hardware platforms. Because OpenCL is an abstraction language, it required only 250 lines of code and took two weeks of coding. Not only was coding in OpenCL much faster but the performance results were similar. Figure 5 shows the results of the Verilog versus OpenCL implementation.

Figure 5. Result of Verilog (CQRT) versus OpenCL (RICH) code and performance. Courtesy of CERN.

CERN Compares Co-packaged Intel Xeon – FPGA Processor against Nallatech PCIe Stratix V FPGA Board

To test performance of the Verilog code, the CERN team used a commercially available Stratix V GXA7 FPGA board / Nallatech 385 board for testing. They achieved an acceleration of a factor up to six with the Stratix – Nallatech PCIe board. However, they found a bottleneck in data transfer—they could not keep the pipeline busy because the PCIe card was limited to an eight-lane interface. Next, the CERN team did tests with the Cherenkov angle code comparing a Nallatech FPGA Board with the co-packaged Intel Xeon/FPGA QPI processor.

Finally, the CERN team tested an Intel Xeon CPU, PCIe Stratix V FPGA and Intel Xeon processor/Stratix V QPI (where only the interconnect was different). As shown in Figure 6, there was a factor of 9 speed up for the PCIe Stratix V FPGA and a 26 factor speed up for the Intel Xeon processor/Stratix V QPI with the faster interconnect.

Figure 6. Test results from the CERN team comparing Intel Xeon CPU, PCIe Stratix V FPGA and Intel Xeon processor/FPGA QPI. Courtesy of CERN.

CERN Plans to do Future Testing using co-packaged Intel Xeon/ Intel Arria10 FPGA Processor

“Our CERN team found the results of using the co-packaged Intel Xeon processor/Stratix V QPI processors to be very encouraging. In addition, we find the programming model with OpenCL attractive and it will be mandatory for the High-Energy Physics (HEP) field. Intel will be launching a co-packaged Intel Xeon processor / Intel Arria 10 FPGA processor in the future. We want to do other experiments with the co-packaged Intel Xeon processor/ Arria 10 FPGA. We expect that the high-bandwidth interconnect and modern Arria 10 FPGA card will provide high performance and performance per Joule for HEP algorithms,” states Neufeld.

Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training and web design firm in Beaverton, OR.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This