CERN openlab Explores New CPU/FPGA Processing Solutions

By Linda Barney

April 14, 2017

Editor’s note: In this contributed feature, Linda Barney describes the ongoing technical collaboration between CERN and Intel to develop a co-packaged Xeon/FPGA processor.

At CERN, the European Organization for Nuclear Research, physicists and engineers are probing the fundamental structure of the universe. The Large Hadron Collider (LHC), which began working in 2008, is the world’s largest and most powerful particle accelerator; it is housed in an underground tunnel at CERN. Niko Neufeld is a deputy project leader at CERN who works on the Large Hadron Collider beauty (LHCb) experiment, which explores what happened after the Big Bang that allowed matter to survive and build the Universe we inhabit today.

“CERN experiments produce an enormous amount of data with forty million proton collisions every second, which leads to primary data rates of terabits per second,” says Neufeld when speaking on a recent FPGA vs. CPU panel. “This is an enormous amount of data and there are a number of technical challenges in our work. We use a number of processing solutions including central processing units (CPUs), field-programmable gate arrays (FPGAs), and graphic processing units (GPUs), but each of these solutions have some limitations. We are collaborating with Intel in experimenting with a co-packaged Intel Xeon processor plus FPGA Quick Path Interconnect (QPI) processor in our LHCb research to try to determine which technology provides the best results.”

CERN collaborates with leading ICT companies and other research institutes through a unique public-private partnership known as ‘CERN openlab’. Its goal is to accelerate the development of cutting-edge solutions for the worldwide LHC community and wider scientific research. Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems.

Figure 1. CERN researchers shown in the Large Hadron Collider tunnel in front of the LHCb detector. Courtesy of CERN (courtesty CERN).

Introducing the co-packaged Intel CPU / FPGA Processor

Today the CPU and FPGA are used as discrete chips in a solution – with an Intel Xeon processor and an FPGA which is typically attached via a PCIe interconnect to the CPU. And the development environment is also discrete using independent development tools from Intel and tools such as OpenCL and C++. Intel is working toward a common workflow and development flow to better integrate FPGAs.

“FPGA typically uses a higher level machine abstraction language (such as Verilog and VHDL) which have a painful low-level hardware programming model for most people. As a next step, Intel has a solution that co-packages the CPU and FPGA in the same Multichip Chip Product (MCP) package to deliver higher performance and lower latency than a discrete solution,” states Bill Jenkins, Intel Senior AI Marketing Manager. The Intel MCP is supported by a cross-platform development framework like OpenCL that can be used to develop applications for both the CPU and FPGA. The Intel solution includes a fully unified intellectual property (IP) and development suite, including languages, libraries and development environments. The roadmap to a unified development flow leverages common tools and libraries to support both FPGA and Intel Xeon processor + FPGA systems along with an expansive ecosystem network of Intel and vendors working on independent development tools for demanding workloads such as HPC, imaging identification, security and big data.

Abstracting away FPGA Coding

Intel is building an abstraction layer (as part of the product containing the Intel CPU and FPGA in the same MCP package), called the Orchestration Software layer. This layer and the higher level IP and software models help make development less complex so that developers don’t need to code specifically to the FPGA. The FPGA-enabled Orchestration software layer abstracts away the API to communicate with the FPGA as shown in the following example.

Figure 2. Example of Intel implementation of user IP implemented into FPGA via an abstraction Orchestration software layer

There is a cloud-based library of functions and end-user IP that have been pre-compiled and built that is loaded into the FPGA at runtime. The user first launches a workload from the host and it goes into the Orchestration software which pushes a function into the FPGA. This produces a bitstream that is pre-compiled on the FPGA to bring the data in—it is almost like a fixed architecture I/O interface.

In the example scenario, users simply download the image from the abstraction Orchestration software layer to the FPGA and it is ready to run without compilation. “With the abstraction Orchestration software layer,” Jenkins explained, “Intel is abstracting away all the difficulties of FPGA programming using machine language tools while enabling all the higher level Intel frameworks including the Intel Trusted Analytics Platform (TAP) and Intel Scalable System Framework (SSI) and tying the FPGA into the frameworks. Intel is developing this approach for a variety of markets including visual understanding, analytics, enterprise, Network Function Virtualization (NFV), VPN, genomics, HPC and storage.”

Large Hadron Collider High-Energy Physics Research at CERN

Neufeld indicates that the experiments at CERN — through what they refer to as ‘online computing’ — require a first-level data-filtering to reduce the data to an amount that can be stored and processed on more traditional processing units such as Intel Xeon processors. Figure 3 shows a schematic view of the future LHCb readout system. At the top level, there is a detector and optical fiber links, which transfer data out of the detector. CERN uses FPGAs to acquire data from the detector. There are also large switching fabrics, as well as clusters of processing elements including CPUs, FPGAs, and GPUs to reduce the amount of data. One of the questions the CERN team is testing is “Which technologies should we use and which provide the best performance and lowest energy usage results?”

Figure 3. Schematic diagram showing future LHCb first-level data-filtering system. Courtesy of CERN.

CERN Tests Complex Cherenkov Angle Reconstruction Calculation

CERN has extensive experience using FPGAs in their research work. “We typically use FPGAs in our research to run algorithms looking for simple integer signatures, or for other less complicated calculations. When we heard about the Intel Xeon / FPGA combined processor, we chose a test using a complex algorithm to do a Cherenkov angle reconstruction of light emission in a particle detector, which is not typically performed on an FPGA. This involves tracing a light particle — photon — through a complex arrangement of optical reflection and deflection systems. Our test case used a rich PID algorithm to calculate the Cherenkov angle for each track and detection point. This is a complex mathematical calculation that involves hyperbolic functions, roots, square roots, etc., as shown in Figure 4. It is one of the most costly calculations done in online reconstruction,” states Neufeld.

Figure 4. Test case running Rich PID algorithm to calculate Cherenkov angle. Courtesy of CERN.

Coding the Cherenkov Angle Reconstruction in Verilog versus OpenCL

The CERN team first implemented the Cherenkov angle reconstruction by coding it in the Verilog HDL. The team wrote a 748 clock-cycle long pipeline in Verilog, along with additional blocks developed for the test including: cubic root, complex square root, rotational matrix, and cross/scalar product. It was a lengthy task doing this coding in Verilog with 3,400 lines of code. With all test benches, the implementation took 2.5 months.

Next, the team recoded the Cherenkov angle code using the OpenCL and the BSP (board support package) designed to work across a variety of hardware platforms. Because OpenCL is an abstraction language, it required only 250 lines of code and took two weeks of coding. Not only was coding in OpenCL much faster but the performance results were similar. Figure 5 shows the results of the Verilog versus OpenCL implementation.

Figure 5. Result of Verilog (CQRT) versus OpenCL (RICH) code and performance. Courtesy of CERN.

CERN Compares Co-packaged Intel Xeon – FPGA Processor against Nallatech PCIe Stratix V FPGA Board

To test performance of the Verilog code, the CERN team used a commercially available Stratix V GXA7 FPGA board / Nallatech 385 board for testing. They achieved an acceleration of a factor up to six with the Stratix – Nallatech PCIe board. However, they found a bottleneck in data transfer—they could not keep the pipeline busy because the PCIe card was limited to an eight-lane interface. Next, the CERN team did tests with the Cherenkov angle code comparing a Nallatech FPGA Board with the co-packaged Intel Xeon/FPGA QPI processor.

Finally, the CERN team tested an Intel Xeon CPU, PCIe Stratix V FPGA and Intel Xeon processor/Stratix V QPI (where only the interconnect was different). As shown in Figure 6, there was a factor of 9 speed up for the PCIe Stratix V FPGA and a 26 factor speed up for the Intel Xeon processor/Stratix V QPI with the faster interconnect.

Figure 6. Test results from the CERN team comparing Intel Xeon CPU, PCIe Stratix V FPGA and Intel Xeon processor/FPGA QPI. Courtesy of CERN.

CERN Plans to do Future Testing using co-packaged Intel Xeon/ Intel Arria10 FPGA Processor

“Our CERN team found the results of using the co-packaged Intel Xeon processor/Stratix V QPI processors to be very encouraging. In addition, we find the programming model with OpenCL attractive and it will be mandatory for the High-Energy Physics (HEP) field. Intel will be launching a co-packaged Intel Xeon processor / Intel Arria 10 FPGA processor in the future. We want to do other experiments with the co-packaged Intel Xeon processor/ Arria 10 FPGA. We expect that the high-bandwidth interconnect and modern Arria 10 FPGA card will provide high performance and performance per Joule for HEP algorithms,” states Neufeld.

Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training and web design firm in Beaverton, OR.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This