CERN openlab Explores New CPU/FPGA Processing Solutions

By Linda Barney

April 14, 2017

Editor’s note: In this contributed feature, Linda Barney describes the ongoing technical collaboration between CERN and Intel to develop a co-packaged Xeon/FPGA processor.

At CERN, the European Organization for Nuclear Research, physicists and engineers are probing the fundamental structure of the universe. The Large Hadron Collider (LHC), which began working in 2008, is the world’s largest and most powerful particle accelerator; it is housed in an underground tunnel at CERN. Niko Neufeld is a deputy project leader at CERN who works on the Large Hadron Collider beauty (LHCb) experiment, which explores what happened after the Big Bang that allowed matter to survive and build the Universe we inhabit today.

“CERN experiments produce an enormous amount of data with forty million proton collisions every second, which leads to primary data rates of terabits per second,” says Neufeld when speaking on a recent FPGA vs. CPU panel. “This is an enormous amount of data and there are a number of technical challenges in our work. We use a number of processing solutions including central processing units (CPUs), field-programmable gate arrays (FPGAs), and graphic processing units (GPUs), but each of these solutions have some limitations. We are collaborating with Intel in experimenting with a co-packaged Intel Xeon processor plus FPGA Quick Path Interconnect (QPI) processor in our LHCb research to try to determine which technology provides the best results.”

CERN collaborates with leading ICT companies and other research institutes through a unique public-private partnership known as ‘CERN openlab’. Its goal is to accelerate the development of cutting-edge solutions for the worldwide LHC community and wider scientific research. Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems.

Figure 1. CERN researchers shown in the Large Hadron Collider tunnel in front of the LHCb detector. Courtesy of CERN (courtesty CERN).

Introducing the co-packaged Intel CPU / FPGA Processor

Today the CPU and FPGA are used as discrete chips in a solution – with an Intel Xeon processor and an FPGA which is typically attached via a PCIe interconnect to the CPU. And the development environment is also discrete using independent development tools from Intel and tools such as OpenCL and C++. Intel is working toward a common workflow and development flow to better integrate FPGAs.

“FPGA typically uses a higher level machine abstraction language (such as Verilog and VHDL) which have a painful low-level hardware programming model for most people. As a next step, Intel has a solution that co-packages the CPU and FPGA in the same Multichip Chip Product (MCP) package to deliver higher performance and lower latency than a discrete solution,” states Bill Jenkins, Intel Senior AI Marketing Manager. The Intel MCP is supported by a cross-platform development framework like OpenCL that can be used to develop applications for both the CPU and FPGA. The Intel solution includes a fully unified intellectual property (IP) and development suite, including languages, libraries and development environments. The roadmap to a unified development flow leverages common tools and libraries to support both FPGA and Intel Xeon processor + FPGA systems along with an expansive ecosystem network of Intel and vendors working on independent development tools for demanding workloads such as HPC, imaging identification, security and big data.

Abstracting away FPGA Coding

Intel is building an abstraction layer (as part of the product containing the Intel CPU and FPGA in the same MCP package), called the Orchestration Software layer. This layer and the higher level IP and software models help make development less complex so that developers don’t need to code specifically to the FPGA. The FPGA-enabled Orchestration software layer abstracts away the API to communicate with the FPGA as shown in the following example.

Figure 2. Example of Intel implementation of user IP implemented into FPGA via an abstraction Orchestration software layer

There is a cloud-based library of functions and end-user IP that have been pre-compiled and built that is loaded into the FPGA at runtime. The user first launches a workload from the host and it goes into the Orchestration software which pushes a function into the FPGA. This produces a bitstream that is pre-compiled on the FPGA to bring the data in—it is almost like a fixed architecture I/O interface.

In the example scenario, users simply download the image from the abstraction Orchestration software layer to the FPGA and it is ready to run without compilation. “With the abstraction Orchestration software layer,” Jenkins explained, “Intel is abstracting away all the difficulties of FPGA programming using machine language tools while enabling all the higher level Intel frameworks including the Intel Trusted Analytics Platform (TAP) and Intel Scalable System Framework (SSI) and tying the FPGA into the frameworks. Intel is developing this approach for a variety of markets including visual understanding, analytics, enterprise, Network Function Virtualization (NFV), VPN, genomics, HPC and storage.”

Large Hadron Collider High-Energy Physics Research at CERN

Neufeld indicates that the experiments at CERN — through what they refer to as ‘online computing’ — require a first-level data-filtering to reduce the data to an amount that can be stored and processed on more traditional processing units such as Intel Xeon processors. Figure 3 shows a schematic view of the future LHCb readout system. At the top level, there is a detector and optical fiber links, which transfer data out of the detector. CERN uses FPGAs to acquire data from the detector. There are also large switching fabrics, as well as clusters of processing elements including CPUs, FPGAs, and GPUs to reduce the amount of data. One of the questions the CERN team is testing is “Which technologies should we use and which provide the best performance and lowest energy usage results?”

Figure 3. Schematic diagram showing future LHCb first-level data-filtering system. Courtesy of CERN.

CERN Tests Complex Cherenkov Angle Reconstruction Calculation

CERN has extensive experience using FPGAs in their research work. “We typically use FPGAs in our research to run algorithms looking for simple integer signatures, or for other less complicated calculations. When we heard about the Intel Xeon / FPGA combined processor, we chose a test using a complex algorithm to do a Cherenkov angle reconstruction of light emission in a particle detector, which is not typically performed on an FPGA. This involves tracing a light particle — photon — through a complex arrangement of optical reflection and deflection systems. Our test case used a rich PID algorithm to calculate the Cherenkov angle for each track and detection point. This is a complex mathematical calculation that involves hyperbolic functions, roots, square roots, etc., as shown in Figure 4. It is one of the most costly calculations done in online reconstruction,” states Neufeld.

Figure 4. Test case running Rich PID algorithm to calculate Cherenkov angle. Courtesy of CERN.

Coding the Cherenkov Angle Reconstruction in Verilog versus OpenCL

The CERN team first implemented the Cherenkov angle reconstruction by coding it in the Verilog HDL. The team wrote a 748 clock-cycle long pipeline in Verilog, along with additional blocks developed for the test including: cubic root, complex square root, rotational matrix, and cross/scalar product. It was a lengthy task doing this coding in Verilog with 3,400 lines of code. With all test benches, the implementation took 2.5 months.

Next, the team recoded the Cherenkov angle code using the OpenCL and the BSP (board support package) designed to work across a variety of hardware platforms. Because OpenCL is an abstraction language, it required only 250 lines of code and took two weeks of coding. Not only was coding in OpenCL much faster but the performance results were similar. Figure 5 shows the results of the Verilog versus OpenCL implementation.

Figure 5. Result of Verilog (CQRT) versus OpenCL (RICH) code and performance. Courtesy of CERN.

CERN Compares Co-packaged Intel Xeon – FPGA Processor against Nallatech PCIe Stratix V FPGA Board

To test performance of the Verilog code, the CERN team used a commercially available Stratix V GXA7 FPGA board / Nallatech 385 board for testing. They achieved an acceleration of a factor up to six with the Stratix – Nallatech PCIe board. However, they found a bottleneck in data transfer—they could not keep the pipeline busy because the PCIe card was limited to an eight-lane interface. Next, the CERN team did tests with the Cherenkov angle code comparing a Nallatech FPGA Board with the co-packaged Intel Xeon/FPGA QPI processor.

Finally, the CERN team tested an Intel Xeon CPU, PCIe Stratix V FPGA and Intel Xeon processor/Stratix V QPI (where only the interconnect was different). As shown in Figure 6, there was a factor of 9 speed up for the PCIe Stratix V FPGA and a 26 factor speed up for the Intel Xeon processor/Stratix V QPI with the faster interconnect.

Figure 6. Test results from the CERN team comparing Intel Xeon CPU, PCIe Stratix V FPGA and Intel Xeon processor/FPGA QPI. Courtesy of CERN.

CERN Plans to do Future Testing using co-packaged Intel Xeon/ Intel Arria10 FPGA Processor

“Our CERN team found the results of using the co-packaged Intel Xeon processor/Stratix V QPI processors to be very encouraging. In addition, we find the programming model with OpenCL attractive and it will be mandatory for the High-Energy Physics (HEP) field. Intel will be launching a co-packaged Intel Xeon processor / Intel Arria 10 FPGA processor in the future. We want to do other experiments with the co-packaged Intel Xeon processor/ Arria 10 FPGA. We expect that the high-bandwidth interconnect and modern Arria 10 FPGA card will provide high performance and performance per Joule for HEP algorithms,” states Neufeld.

Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training and web design firm in Beaverton, OR.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire