Hyperion (IDC) Paints a Bullish Picture of HPC Future

By John Russell

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Global exascale plans are solidifying (who, what, when, and how much ($)). The new kid on the block – all things ‘big’ data driven – is becoming an adolescent and behaving accordingly. And HPC ROI, at least as measured by Hyperion, is $551 per $1 invested (revenue growth) and $52 per $1 of profit invested.

This new version of HPC has been taking shape for some time and most of the themes are familiar (see HPCwire 2015 article, IDC: The Changing Face of HPC): industry consolidation, SGI’s acquisition by HPE along with the Dell EMC merger being the most recent; accelerated computing versus Moore’s Law; the growing appetite of HPC technology suppliers for expansion into the enterprise; big data’s transformation into a more nuanced multi-faceted blend of technologies and applications making it a form of HPC. These are just a few of the major trends laid out by Hyperion at its HPC User Forum.

All netted down, HPC is still expected to be a growth market, according to Earl Joseph, now CEO of Hyperion, which is expected to be acquired by year’s end. Joseph cited the following drivers:

  • Growing recognition of HPC’s strategic value.
  • HPDA, including ML/DL, cognitive and AI.
  • HPC in the cloud will lift the sector writ large.

“There’s a lot of growth in the upper half of the market and we are back to slowdown in the lower half of the market,” said Joseph. “Supercomputers are showing a very good recovery but they still haven’t hit the high point (~$5 billion) of three or four years ago.” They likely won’t get back to that level till 2022/2023 suggested Joseph.

Overall the HPC market segments have tended to hold their position. Storage ($4,316 million) remained the largest non-server segment and the fastest growing segment overall with a 7.8 percent annual growth expected over the next five years.

Vendor jockeying will continue he noted. Consolidation has been a major factor. HPE topped the revenue list in 2016 and will likely do so again in 2017 when SGI’s revenue is added. Dell EMC would no doubt question that and it will be interesting to watch this rivalry. IBM has never recovered its position after jettisoning its x86 businesses. The battle between x86 offerings, IBM Power, and ARM continues with both Europe and Japan making substantial bets on ARM for HPC uses. Indeed, the rise of heterogeneous computing generally is creating new opportunities for a variety of accelerators and accelerated systems.

These are the top HPC server suppliers by revenue ($ millions) according to Hyperion: HPE/HP ($3,878), Dell ($2,014), Lenovo ($909), IBM ($492), Cray ($461), Sugon ($315), Fujitsu ($226), SGI ($169), NEC ($166), Bull Atos ($118), and Other ($2,453). Interesting to note that “Other” is the second largest total revenue.

Not surprisingly, Hyperion looked closely at the intensifying race for exascale machines. China, for example, has three efforts on the path to exascale. Joseph expects China to be first to stand up an exascale. “They are saying 2019 but we’re not sure they will hit that date. We’re saying 2020,” said Joseph. The major players – U.S., EU, Japan, and China – are all speeding up their efforts. In the U.S., for example, Path Forward awards are expected soon.

Many questions remain. China is still selecting final vendors, something that was supposed to be done last fall said Joseph. Japan’s design is the closest to being “locked in” with the prime contractor Fujitsu having settled on an ARM-based architecture. But that project has experienced some delay and its financing method is not fixed.

“According to Japan’s latest announcement, their machine will be up in 2023 but we really expect it to be 2024. The cost may be a bit higher too, $800 million to $900-plus million range. Also, the Japanese government has not yet agreed to fund the whole system. They are funding it one year at time,” said Joseph.

Nevertheless, exascale funds are starting to flow and plans are taking firmer shape. As shown here, Hyperion has characterized the major exascale programs and forecast likely costs, technology choices, and timetables. Paul Messina, director of the U.S. Exascale Computing Project, provided an update at the HPC User Forum and HPCwire will have detailed coverage of the U.S. effort shortly.

Predictably, the Hyperion presentation covered a lot of ground drawn from Hyperion/IDC’s ongoing research efforts. Steve Conway, another IDC veteran and now Hyperion SVP research, reviewed the adoption of HPDA as well as zeroing in on two of its drivers, deep learning and machine learning. You may recall that IDC was one of the first to recognize the rise of data analytics as part of HPC. Clearly there are many potential uses cases Conway said. Today, the HPC-HPDA convergence is taken for granted and is depicted in the slide below.

Hyperion has just created four new data-intensive segments, bulleted here, with more to follow:

  • Fraud and anomaly detection. Two example use cases include government (intelligence, cyber security) and industry (credit card fraud, cyber security).
  • Affinity Marketing. Discern potential customers’ demographics, buying preferences and habits.
  • Business intelligence. Identify opportunities to advance market position and competitiveness.
  • Precision Medicine. Personalized approach to improve outcomes, control costs.

“Fraud and anomaly detection are the largest today. Business intelligence is growing quickly. The tortoise that will probably win the race is precision medicine because of the size of the health care over time,” said Conway, noting the HPDA market is growing two to three times faster than traditional overall HPC market.

Not surprisingly, deep learning is the darling of this frontier and also the most technically challenging. Singling out precision medicine as a promising area for DL, Conway said “IBM Watson is the name that’s known here but I promise you x86 clusters are doing the same thing.”

Making the machine learning to deep learning shift is a difficult journey said Conway. Having enough data both to train deep learning systems and also to infer high fidelity decisions when put into practice is the big challenge. “If you are in the realm of Google or Baidu or Facebook, you have plenty of data. If you are outside of that realm you are in trouble. In most of these realms you do not have enough data to do deep learning,” said Conway.

“One case in point, and we have many of them: We talked to the United Health Group which has about 100 million people that it covers; that’s not nearly enough to do the deep learning they need and they know it. They have built a facility in Cambridge, Mass., and invited competitors to come in and to pool anonymized data to try to get to the point where they can actually start playing with deep learning. This is a big issue.”

Aside from having enough data, there’s the computation challenge. Today, GPUs “rule the roost in these ecosystems, with the software built around them, but we expect to see other things like Intel Phis and the remarkable resurgence of FPGAs have a role. Another big issue vendors are having here is there really aren’t good benchmarks and they spend too much time just trying to decide what would be satisfactory results,” Conway said.

In earlier studies HPC user willingness to deploy in the cloud has often seemed tepid. Costs, security, adequate performance (data movement, computation, and storage) were all concerns, especially so in public cloud. Hyperion suggested attitudes seem to be changing and reported a jump in the number of HPC sites using public clouds – 64 percent now up from 13 percent in 2011. Conway cautioned that the size and number of jobs were still limited to a small proportion of any give user’s needs. Conversely, suggested Conway, private and hybrid cloud use was growing fast and held more near-term promise.

Despite the great flux within HPC many areas have changed little according to Hyperion. For example, software problems (management s/w, parallel s/w, license issues, etc.) remain the number one pain point to HPC adoption or use according to Hyperion research. This prompted a member of the audience to say, “Earl, this looks like exactly the same IDC slide I saw ten years ago.” It sort of is.

Storage access time was now the number two complaint, followed by clusters still too hard to use and manage.

Hyperion presented a fair amount of detail concerning its ROI study and is making the full data available to requesters. (Download Results: www.hpcuserforum.com/ROI)

Slides courtesy of Hyperion Research.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This