Hyperion (IDC) Paints a Bullish Picture of HPC Future

By John Russell

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Global exascale plans are solidifying (who, what, when, and how much ($)). The new kid on the block – all things ‘big’ data driven – is becoming an adolescent and behaving accordingly. And HPC ROI, at least as measured by Hyperion, is $551 per $1 invested (revenue growth) and $52 per $1 of profit invested.

This new version of HPC has been taking shape for some time and most of the themes are familiar (see HPCwire 2015 article, IDC: The Changing Face of HPC): industry consolidation, SGI’s acquisition by HPE along with the Dell EMC merger being the most recent; accelerated computing versus Moore’s Law; the growing appetite of HPC technology suppliers for expansion into the enterprise; big data’s transformation into a more nuanced multi-faceted blend of technologies and applications making it a form of HPC. These are just a few of the major trends laid out by Hyperion at its HPC User Forum.

All netted down, HPC is still expected to be a growth market, according to Earl Joseph, now CEO of Hyperion, which is expected to be acquired by year’s end. Joseph cited the following drivers:

  • Growing recognition of HPC’s strategic value.
  • HPDA, including ML/DL, cognitive and AI.
  • HPC in the cloud will lift the sector writ large.

“There’s a lot of growth in the upper half of the market and we are back to slowdown in the lower half of the market,” said Joseph. “Supercomputers are showing a very good recovery but they still haven’t hit the high point (~$5 billion) of three or four years ago.” They likely won’t get back to that level till 2022/2023 suggested Joseph.

Overall the HPC market segments have tended to hold their position. Storage ($4,316 million) remained the largest non-server segment and the fastest growing segment overall with a 7.8 percent annual growth expected over the next five years.

Vendor jockeying will continue he noted. Consolidation has been a major factor. HPE topped the revenue list in 2016 and will likely do so again in 2017 when SGI’s revenue is added. Dell EMC would no doubt question that and it will be interesting to watch this rivalry. IBM has never recovered its position after jettisoning its x86 businesses. The battle between x86 offerings, IBM Power, and ARM continues with both Europe and Japan making substantial bets on ARM for HPC uses. Indeed, the rise of heterogeneous computing generally is creating new opportunities for a variety of accelerators and accelerated systems.

These are the top HPC server suppliers by revenue ($ millions) according to Hyperion: HPE/HP ($3,878), Dell ($2,014), Lenovo ($909), IBM ($492), Cray ($461), Sugon ($315), Fujitsu ($226), SGI ($169), NEC ($166), Bull Atos ($118), and Other ($2,453). Interesting to note that “Other” is the second largest total revenue.

Not surprisingly, Hyperion looked closely at the intensifying race for exascale machines. China, for example, has three efforts on the path to exascale. Joseph expects China to be first to stand up an exascale. “They are saying 2019 but we’re not sure they will hit that date. We’re saying 2020,” said Joseph. The major players – U.S., EU, Japan, and China – are all speeding up their efforts. In the U.S., for example, Path Forward awards are expected soon.

Many questions remain. China is still selecting final vendors, something that was supposed to be done last fall said Joseph. Japan’s design is the closest to being “locked in” with the prime contractor Fujitsu having settled on an ARM-based architecture. But that project has experienced some delay and its financing method is not fixed.

“According to Japan’s latest announcement, their machine will be up in 2023 but we really expect it to be 2024. The cost may be a bit higher too, $800 million to $900-plus million range. Also, the Japanese government has not yet agreed to fund the whole system. They are funding it one year at time,” said Joseph.

Nevertheless, exascale funds are starting to flow and plans are taking firmer shape. As shown here, Hyperion has characterized the major exascale programs and forecast likely costs, technology choices, and timetables. Paul Messina, director of the U.S. Exascale Computing Project, provided an update at the HPC User Forum and HPCwire will have detailed coverage of the U.S. effort shortly.

Predictably, the Hyperion presentation covered a lot of ground drawn from Hyperion/IDC’s ongoing research efforts. Steve Conway, another IDC veteran and now Hyperion SVP research, reviewed the adoption of HPDA as well as zeroing in on two of its drivers, deep learning and machine learning. You may recall that IDC was one of the first to recognize the rise of data analytics as part of HPC. Clearly there are many potential uses cases Conway said. Today, the HPC-HPDA convergence is taken for granted and is depicted in the slide below.

Hyperion has just created four new data-intensive segments, bulleted here, with more to follow:

  • Fraud and anomaly detection. Two example use cases include government (intelligence, cyber security) and industry (credit card fraud, cyber security).
  • Affinity Marketing. Discern potential customers’ demographics, buying preferences and habits.
  • Business intelligence. Identify opportunities to advance market position and competitiveness.
  • Precision Medicine. Personalized approach to improve outcomes, control costs.

“Fraud and anomaly detection are the largest today. Business intelligence is growing quickly. The tortoise that will probably win the race is precision medicine because of the size of the health care over time,” said Conway, noting the HPDA market is growing two to three times faster than traditional overall HPC market.

Not surprisingly, deep learning is the darling of this frontier and also the most technically challenging. Singling out precision medicine as a promising area for DL, Conway said “IBM Watson is the name that’s known here but I promise you x86 clusters are doing the same thing.”

Making the machine learning to deep learning shift is a difficult journey said Conway. Having enough data both to train deep learning systems and also to infer high fidelity decisions when put into practice is the big challenge. “If you are in the realm of Google or Baidu or Facebook, you have plenty of data. If you are outside of that realm you are in trouble. In most of these realms you do not have enough data to do deep learning,” said Conway.

“One case in point, and we have many of them: We talked to the United Health Group which has about 100 million people that it covers; that’s not nearly enough to do the deep learning they need and they know it. They have built a facility in Cambridge, Mass., and invited competitors to come in and to pool anonymized data to try to get to the point where they can actually start playing with deep learning. This is a big issue.”

Aside from having enough data, there’s the computation challenge. Today, GPUs “rule the roost in these ecosystems, with the software built around them, but we expect to see other things like Intel Phis and the remarkable resurgence of FPGAs have a role. Another big issue vendors are having here is there really aren’t good benchmarks and they spend too much time just trying to decide what would be satisfactory results,” Conway said.

In earlier studies HPC user willingness to deploy in the cloud has often seemed tepid. Costs, security, adequate performance (data movement, computation, and storage) were all concerns, especially so in public cloud. Hyperion suggested attitudes seem to be changing and reported a jump in the number of HPC sites using public clouds – 64 percent now up from 13 percent in 2011. Conway cautioned that the size and number of jobs were still limited to a small proportion of any give user’s needs. Conversely, suggested Conway, private and hybrid cloud use was growing fast and held more near-term promise.

Despite the great flux within HPC many areas have changed little according to Hyperion. For example, software problems (management s/w, parallel s/w, license issues, etc.) remain the number one pain point to HPC adoption or use according to Hyperion research. This prompted a member of the audience to say, “Earl, this looks like exactly the same IDC slide I saw ten years ago.” It sort of is.

Storage access time was now the number two complaint, followed by clusters still too hard to use and manage.

Hyperion presented a fair amount of detail concerning its ROI study and is making the full data available to requesters. (Download Results: www.hpcuserforum.com/ROI)

Slides courtesy of Hyperion Research.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DoE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This