MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

By Tiffany Trader

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. This is the largest known high-performance computing cluster to run in the public cloud, according to Google’s Alex Barrett and Michael Basilyan.

Andrew Sutherland, principal research scientist at MIT, photographed at the MIT campus in Cambridge, MA

Sutherland used Google’s cloud to explore generalizations of the Sato-Tate Conjecture and the conjecture of Birch and Swinnerton-Dyer to curves of higher genus, write Barrett and Basilyan on the Google Cloud Platform blog. “In his latest run, he explored 1017 hyperelliptic curves of genus 3 in an effort to find curves whose L-functions can be easily computed, and which have potentially interesting Sato-Tate distributions. This yielded about 70,000 curves of interest, each of which will eventually have its own entry in the L-functions and Modular Forms Database (LMFDB),” they explain.

Sutherland compared the quest to find suitable genus 3 curves to “searching for a needle in a fifteen-dimensional haystack.” It’s highly compute-intensive research that can require evaluating a 50 million term polynomial in 15 variables.

Before moving to the public cloud platform, Sutherland conducted his research locally on a 64-core machine but runs would take months. Using MIT clusters was another option, but there were sometimes access and software limitations. With Compute Engine, Sutherland can create a cluster with his preferred operating system, libraries and applications, the Google blog authors note.

According to Google, the preemtible VMs that Sutherland used are “full-featured instances that are priced up to 80 percent less than regular equivalents, but can be interrupted by Compute Engine.”

Since the computations are embarrassingly parallel, interruptions have limited impact and the workload can also grab available instances across Google Cloud Regions. Google reports that in a given hour, about 2-3 percent of jobs are interrupted and automatically restarted.

Coordinating instances was done with a combination of Cloud Storage and Datastore, which assigns tasks to instances based on requests from the Python client API. “Instances periodically checkpoint their progress on their local disks from which they can recover if preempted, and they store their final output data in a Cloud Storage bucket, where it may undergo further post-processing once the job has finished,” write the blog authors. Pricing for the 220,000-core cluster was not shared.

Sutherland is already planning an even larger run of 400,000 cores, noting that when you “can ask a question and get an answer in hours rather than months, you ask different questions.”

There have been several other notably large cloud runs conducted by HPC cloud specialist Cycle Computing over the years. In late 2013, Cycle spun up a 156,000-core AWS cluster for Schrödinger and the University of Southern California to power a quantum chemistry application. The year prior, Cycle Computing created a 50,000 core virtual supercomputer on AWS to facilitate Schrödinger’s search for novel drug compounds for cancer research. In November 2014, Cycle customer HGST ran a 1 million simulation job in eight hours to help identify an optimal advanced drive head design. At peak, the cluster incorporated 70,908 Ivy Bridge cores with a max theoretical performance of 729 teraflops.

Cycle has also leveraged the Google Compute Engine (GCE). In 2015, Cycle ran a 50,000-core cancer gene analysis workload for the Broad Institute using preemptible virtual machine instances.

Amazon Web Services has benchmarked several self-made clusters for the Top500 list. The most recent, a 26,496 core Intel Xeon cluster, entered the list in November 2013 at position 64 with 484 Linpack teraflops. As of November 2016, the cluster was in 334th position.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This