Messina Update: The US Path to Exascale in 16 Slides

By John Russell

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum in Santa Fe, NM. The biggest change, of course, is ECP’s accelerated timetable with delivery of the first exascale machine now scheduled for 2021. While much of the material covered by Messina wasn’t new there were a few fresh details on the long awaited Path Forward hardware contracts and on progress-to-date in other ECP fronts.

Paul Messina, ECP Director

“We have selected six vendors to be primes, and in some cases they have had other vendors involved in their R&D requirements. [We have also] been working on detailed statements of work because the dollar amounts are pretty hefty, the approval process [reaches] high up in the Department of Energy,” said Messina of the Path Forward awards. Five of the contracts are signed and the sixth is not far off. Even his slide had the announcement to be ready by COB April 14, 2017. “It would have been great to announce them at this HPC User Forum but it was not meant to be.” He said the announcements will be made public soon.

The duration of the ECP project has been shortened to seven years from ten years although there’s a 12-month schedule contingency built in to accommodate changes, said Messina. Interestingly, during the Q&A, Messina was asked about U.S. willingness to include ‘individuals’ not based in the U.S. in the project. The question was a little ambiguous as it wasn’t clear if ‘individuals’ was intended to encompass foreign interests broadly, but Messina answered directly, “[For] people who are based outside the U.S. I would say the policy is they are not included.”

Presented here are a handful of Messina’s slides updating the U.S. march towards exascale computing – most of the talk dwelled on software related challenges – but first it’s worth stealing a few Hyperion Research (formerly IDC) observations on the global exascale race that were also presented during the forum. The rise of national and regional competitive zeal in HPC and the race to exascale is palpable as evidenced by Messina’s comment on U.S. policy.

China is currently ahead in the race to stand up an exascale machine first, according to Hyperion. That’s perhaps not surprising given its recent dominance of the Top500 list. Japan is furthest along in settling on a design, key components, and contractor. Here are two Hyperion slides summing up the world race. (see HPCwire article, Hyperion (IDC) Paints a Bullish Picture of HPC Future, for full rundown of HPC trends)

Messina emphasized the three-year R&D projects (Path Forward) are intended to result in better hardware at the node level, memory, system level and energy consumption, and programmability. Moreover, ECP is looking past the initial exascale systems. “The idea is that after three years hopefully the successful things will become part of [vendors’] product lines and result in better HPC systems for them not just for the initial exascale systems,” he said. The RFPs for the exascale systems themselves will come from the labs doing the buying.

The ECP is a collaborative effort of two U.S. Department of Energy organizations, the Office of Science (DOE-SC) and the National Nuclear Security Administration (NNSA). Sixteen of seventeen national labs are participating in ECP and the six who have traditionally fielded leadership HPC system – Argonne, Oak Ridge, Lawrence Livermore, Sandia, Los Alamos, and Lawrence Berkeley National Laboratories – form the core partnership and signed a memorandum of agreement on cooperation defining roles and responsibilities.

Under the new schedule, “We will have an initial exascale system delivered in 2021 ready to go into production in 2022 and which will be based on advanced architecture which means really that we are open to something that is not necessarily a direct evolution of the systems that are currently installed at the NL facilities,” explained Messina.

“Then the ‘Capable Exascale’ systems, which will benefit from the R&D we do in the project, we currently expect them to be delivered in 2022 and available in 2023. Again these are at the facilities that normally get systems. Lately it’s been a collaboration of Argonne, Oak Ridge and Livermore, that roughly every four years establish new systems. Then [Lawrence] Berkeley, Los Alamos and Sandia, which during the in between years installs systems.”  Messina again emphasized, “It is the facilities that will be buying the systems. [The ECP] be doing the R&D to give them something that is hopefully worth buying.”

Four key technical challenges are being addressed by the ECP to deliver capable exascale computing:

  • Parallelism a thousand-fold greater than today’s systems.
  • Memory and storage efficiencies consistent with increased computational rates and data movement requirements.
  • Reliability that enables system adaptation and recovery from faults in much more complex system components and designs.
  • Energy consumption beyond current industry roadmaps, which would be prohibitively expensive at this scale.

Another important ECP goal, said Messina, is to kick the development of U.S. advanced computing into a new higher trajectory (see slide below).

From the beginning the exascale project has steered clear of FLOPS and Linpack as the best measure of success. That theme has only grown stronger with attention focused on defining success as performance on useful applications and the ability to tackle problems that are intractable on today’s petaflops machines.

“We think of 50x times that performance on applications [as the exascale measure of merit], unfortunately there’s a kink in this,” said Messina. “The kink is people won’t be running todays jobs in these exascale systems. We want exascale systems to do things we can’t do today and we need to figure out a way to quantify that. In some cases it will be relatively easy – just achieving much greater resolutions – but in many cases it will be enabling additional physics to more faithfully represent the phenomena. We want to focus on measuring every capable exascale based on full applications tackling real problems compared to what they can do today.”

“This list is a bit of an eye chart (above, click to enlarge) and represents the 26 applications that are currently supported by the ECP. Each of them, when selected, specified a challenge problem. For example, it wasn’t just a matter of saying they’ll do better chemistry but here’s a specific challenge that we expect to be able to tackle when the first exascale systems are available,” said Messina

One example is GAMESS (General Atomic and Molecular Electronic Structure System) an ab initio quantum chemistry package that is widely used. The team working on GAMESS has spelled out specific problems to be attacked. “It’s not only very good code but they have ambitious goals; if we can help that team achieve its goals exascale for the games community code, the leverage is huge because it has all of those users. Now not all of them need exascale to do their work but those that do will be able to do it quickly and more easily,” said Messina.

GAMESS is also a good example of a traditional FLOPS heavy numerical simulation application. Messina reviewed four other examples (earthquake simulation, wind turbine applications, energy grid management optimization, and precision medicine). “The last one that I’ll mention is a collaboration between DoE and NIH and NCI on cancer as you might imagine,” said Messina. “It is extremely important for society and also quite different to traditional partial differential equation solving because this one will rely on deep learning and use of huge amounts of data – being able to use millions of patient records on types of cancer and the treatments they received and what the outcome was as well as millions of potential cures.”

Data analytics is a big part of these kinds of precision medicine applications, said Messina. When pressed on whether the effort to combine traditional simulation with deep learning would inevitably lead to diverging architectures, Messina argued for the contrary: “One of our second level goals is try to promote convergence as opposed divergence. I don’t know that we’ll be successful in that but that’s what we are hoping. [We want] to understand that better because we don’t have a good understanding of deep learning and data analytics.”

Co-design also been a priority and received a fair amount of attention. Doug Kothe, ECP director of applications development, is spearheading those efforts. Currently there are five co-design centers including a new one focused on graph analytics. All of the teams have firm milestones, including some shared milestones with other ECP effort to ensure productive cooperation.

Messina noted that, “Although we will be measuring our success based on whole applications, in the meantime you can’t always deal with the whole application, so we have proxies and sub projects. The vendors need this and we will need it to guide our software development.”

Ensuring resilience is a major challenge given the exascale system complexity. “On average the user should notice a fault on the order of once a week. There may be faults every hour but the user shouldn’t see them more than once a week,” said Messina. This will require, among other things, a robust capable software stack, “otherwise it’s a special purpose system or a system that is very difficult to use.”

Messina showed a ‘notional’ software stack slide (below, click to enlarge). “Resilience and workflows are on the side because we believe they influence all aspects of the software stack. In a number of areas we are investing in several approaches to accomplish the same functionality. At some point we will narrow things down. At the same time we feel we probably have some gaps, especially in the data issues, and are in the process of doing a gap analysis for our software stack,” he said.

Clearly it’s a complex project with many parts. Integration of all these development activities is an ongoing challenge.

“You have to work together so the individual teams have shared milestones. Here’s one that I selected simply because it was easy to describe. By the beginning of next calendar year [we should have] new prototype APIs to have coordination between MPI and OpenMPI runtimes because this is an issue now in governing the threads and messages when you use both programming models which a fair number of applications do. How is this going to work? So the software team doing this will interact with a number of application development teams to make sure we understand their runtime requirements. We can’t wait until we have the exascale systems to sort things out.”

“We also want to be able to measure how effective the new ideas are likely to be and so we are also launched a design space evaluation effort,” said Messina. The ECP project has actively sought early access to several existing resources for use during development.

These are just a few of the topics Messina touched on. Workforce training is another key issue that ECP is tackling. It is also increasing it communications and outreach efforts as shown below. There is, of course, an ECP web site and recently ECP launched newsletter expected to be published roughly monthly.

With the Path Forward awards coming soon, several working group meetings having been held, and the new solidified plan, the U.S. effort to reach exascale computing is starting to feel concrete. It will be interesting to see how well ECP’s various milestones are hit. The last slide below depicts the overall program. Hyperion indicated it will soon post all of Messina’s slides (and other presentations from HPC User Forum) on the HPC User Forum site.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This