MPI Is 25 Years Old!

By Ewing Lusk and Jesper Larsson Träff

May 1, 2017

Has it really been 25 years since the Message Passing Interface standard was born? It has indeed, and at this year’s EuroMPI meeting in September in Chicago, a “birthday” symposium will be held to celebrate the occasion. Speakers from the remote past of MPI, the middle years, and the current time will touch on the ideas that have given MPI its long life and will highlight the impact the standard has had on multiple aspects of parallel computing, from applications to libraries to its multiple implementations.

The concept of a standard for message passing emerged over time. While assorted systems, both commercial and free, competed for “mind share” and commercial success, a small meeting of researchers took place in 1991 at a conference in Oberlech, Austria. There Jack Dongarra, Rolf Hempel, Tony Hey, and David Walker drafted a white paper outlining a proposal for what a standard might look like, borrowing heavily from Marc Snir’s work at IBM. Jack Dongarra, Professor of Computer Science at the University of Tennessee, recalls, “Each of the existing systems had merit, but none had everything needed to move application development forward. We decided to instigate a community effort to address the problem.” It seems reasonable to affix the label “Birth of MPI” to the resulting workshop entitled “Standards for Message Passing in a Distributed Memory Environment” organized by Jack Dongarra and David Walker with funding from the Ken Kennedy Center for Research in Parallel Computation at Rice University in April 1992. That was the first time a wide variety of interested stakeholders gathered in an open meeting dedicated to the topic of a standard for message passing, forecasting the openness of the process that would follow. The result of that workshop, which featured presentations on multiple vendor-specific and portable systems, was a realization that a great diversity of good ideas existed among then-current message-passing libraries but that the lack of a standard was impeding the progress of parallel computing.

Jack Dongarra

At the Supercomputing ’92 conference in November, a committee was formed to define a message-passing standard. At the time of creation, no one knew what the outcome might look like, but the effort was begun with the following objectives:  (1) to define a portable standard for message-passing, which would not be an official, ANSI-like standard but would attract both implementers and users; (2) to operate in a completely open way, allowing anyone to join the discussions, either by attending meetings in person or by monitoring open email discussions; and (3) to be finished in one year.

The MPI effort was a lively one, as a result of the tensions among these three objectives. The committee decided to follow the format used by the High-Performance Fortran Forum, whose procedures had been well received by its community. (It even decided to meet in the same hotel in North Dallas.)  An early decision of the MPI Forum was to not adopt any existing system or proposal as a starting but to start from scratch, with the explicit goals of portability, expressiveness, and performance capability. “Ease of use” was not a primary goal; the idea was that libraries, compilers, and other software layers would provide this aspect of parallel programming, and that applications would rely on their implementations over MPI to provide convenience of programming.

More formal meetings began in January 1993 under the name “MPI Forum,” an extension of the SC ’92 committee, and continued until the following February. Over that time, more than 60 people from 40 organizations participated, although attendance at most meetings was about 30. The procedures for submitting proposals and voting were adopted from those of HPF Forum, which had worked well. One reason the MPI standardization effort succeeded was that the MPI Forum itself was so broadly based. At the original (MPI-1) Forum the parallel computer vendors were represented by Convex, Cray, IBM, Intel, Meiko, nCUBE, NEC, and Thinking Machines. Members of the groups associated with portable software libraries were also there: PVM, p4, Zipcode, Chameleon, PARMACS, TCGMSG, and Express were all represented, as well as some application groups. One subgroup committed to providing a test implementation of each iteration of the standard as it evolved from meeting to meeting; this proved valuable in uncovering the implementation consequences of API decisions, as well as ensuring that when the standard definition was completed, a prototype implementation was immediately available. Marc Snir, Professor of Computer Science at the University of Illinois and an original Forum member representing IBM, has said, “The MPI Forum was an outstanding example of many companies, research labs, and individuals working together to achieve a common good.”

The first version of the MPI standard was published in May 1994. It included standard versions of many well-known message-passing operations such as blocking and nonblocking sends and receives, together with collective operations such as broadcast, reduce, and scan. It broke new ground with its concept of communicators (essential for the modularity of MPI-based libraries), datatypes (to deal efficiently with structured and noncontiguous messages), and process topologies (ignored by many in those days but becoming more significant on today’s machines). Its inclusion of both Fortran and C bindings (with identical semantics) signaled its desire to be immediately useful to both libraries and end-user scientific applications.

MPI also took an innovative approach to the problem of tools for debugging and performance analysis. Rather than designing such a tool into the standard specification itself, MPI provided a mechanism, its “profiling interface,” by which anyone could write a library that intercepted a subset of MPI calls in order to count, measure, or display them in some way, before (and after) passing them to the underlying MPI implementation for actual execution. As expected, this has spawned a wide collection of tools that are completely portable, since the profiling interface is part of the standard rather than the tool itself.

During the 1993-1994 meetings of the MPI Forum, several issues were postponed in order to reach early agreement on a core of message-passing functionality, which nonetheless included several innovative concepts, such as communicators, datatypes, and topologies. The Forum reconvened during 1995-1997 to extend MPI to include remote memory operations, parallel I/O, and dynamic process management, along with a number of features designed to increase the convenience and robustness of MPI. This effort resulted in the MPI-2 standard, released in 1997. MPI-2 had three major new feature sets:  an extensive interface to efficiently support parallel file I/O to and from MPI programs; support for one-sided (put/get) communication; and dynamic process management, namely, the ability to create additional processes from a running MPI program and the ability for separately started MPI applications to connect to each other and communicate. MPI-2 also introduced other features, such as precisely defined semantics for multithreaded communication that in some way foreshadowed the multiple modes of OpenMP parallelism, bindings for Fortran-90 and C++, and detailed support for mixed language programming (how to send a message from Fortran and have it received in C, for example).

While the MPI-2 standard was finished in 1997, it took a few years for full implementations to appear. In contrast to the MPI-1 effort, there was no hand-in-hand prototype developed for most of the additions of MPI-2, and in retrospect, some of the useful feedback on the standardization process from a co-developed prototype was missing. Nevertheless, over the next decade and a half, MPI filled the needs of most computational science codes that required a high-performance, scalable, portable programming system. The Forum itself disbanded.

The timing of MPI seems to have been about right. Trying to establish such a standard earlier might have failed to benefit from research into multiple approaches. Indeed, some feared that adoption of a standard would shut down research into the message-passing model. In fact, the opposite happened. Having a fairly complete, performance-enabling, portable interface target stimulated a wealth of research into implementation approaches, tool development, and application algorithms. Much of the research appeared in the Proceedings of the Euro-* conferences, underlining the international nature of MPI-based research. These workshops started as PVM (Parallel Virtual Machine) user group meetings, became EuroPVM workshops from 1994 to 1996, EuroPVM/MPI from 2007 to 2009, and EuroMPI from 2010 to 2017. It is telling and amusing that “Euro”MPI 2017 will be held in Chicago this year.

Over the next fifteen years or so, the MPI Forum itself was inactive, the published standard remained unchanged, and MPI was a stable interface for users and implementers alike. Vendors used the open-source prototype implementations (MPICH, and later OpenMPI), layered to allow optimizations at multiple levels, to evolve their proprietary implementations over time in order to gradually take advantage of their own evolving specialized hardware.

This was no mean feat. As Bill Gropp, Acting Director and Chief scientist at the National Center for Supercomputing Applications, says, “One of the hardest things about an MPI implementation is keeping the implementation focused on the future. This requires finding a balance between making engineering decisions based on today’s hardware and designing and implementing for likely directions in the future.”  Many message-passing applications, written in customized ways to deal with the portability problem, switched to making direct MPI calls, improving efficiency and maintainability. And library development was unleashed, fulfilling one of MPI’s original goals. Barry Smith, Senior Computer Scientist at Argonne National Laboratory and primary developer of the PETSc library, explains MPI’s contribution to library development as follows:  “MPI changed everything, by providing an extensive API for message passing and collectives that allowed portable distributed memory scientific libraries to no longer need to be programmed to the lowest common denominator of message passing systems. Equally important, MPI eliminated the problem of ‘tag collision’ where each library might utilize the same tags for messages, resulting in messages sent from one library being (improperly) received and processed by a different library or the application code. The MPI communicator concept made distributed parallel scientific libraries practical in two ways, it eliminated the tag collision problem and (by the use of subcommunicators) allowed applications to simply utilize scientific libraries to perform needed computations on subsets of processes, for example with ‘divide and conquer’ algorithms.”

For more than a decade after the Forum disbanded in 1997, the MPI specification remained stable, providing a period during which MPI could “sink in” while implementations steadily improved, parallel libraries flourished, and applications, now portable, took advantage of multiple new tera- and petascale machines, challenging those implementations and libraries to become ever more scalable. However, HPC moves fast, and after a dozen years multiple trends had gradually increased community pressure to restart the MPI process, whose inclusiveness and openness had served the community so well in the past.

For one thing, the scale of massively parallel systems had reached more than a million cores. Single-core processors had disappeared, nodes had become symmetric multiprocessors, and defining how a distributed-memory model like MPI’s would interact with threads (specifically, the emerging OpenMP standard) and shared memory became more critical. Remote memory access (put/get) support in networks became mainstream, raising the applicability of efficient remote memory access (RMA) as a programming model. Although MPI-2’s RMA was used by some applications, it had failed to live up to expectations and needed an overhaul. C and Fortran had both evolved, requiring updates to the MPI interfaces. Nonblocking collective operations had been proposed, and some experience with them obtained. At the time of MPI-2, nonblocking collectives had been considered but deliberately left out of the standard because of the expectation that they could be implemented on top of MPI by issuing blocking operations in separate threads. However, threads turned out to be more difficult to use efficiently, and support for threads was uneven. The increase in scale had brought fault tolerance issues to the fore. And finally, a list of (mostly) minor errata had accumulated.

In response to all this, the MPI Forum reconstituted itself in 2008, at first tidying up MPI-2 and eventually releasing the initial version of MPI-3 in September 2012. Major new features of MPI-3 include the nonblocking collective operations, together with “neighborhood” collectives, useful for stencil computations and relying on the topology functions from MPI-1. (The concept of a nonblocking barrier was considered a joke during the MPI-1 meetings; now MPI has one!) There is an improved one-sided communication interface as well as a tools interface that goes beyond MPI-1’s profiling interface to dynamically access the behavior of an MPI implementation. The Fortran bindings have been updated to take advantage of the Fortran 2008 standard, which was a major step forward in making Fortran work well with libraries in a parallel environment. C bindings were modernized to catch more errors at compile time. Other new features improved interactions with threads and shared memory.

Some topics that the MPI-3 Forum grappled with have not (yet) become part of MPI, such as fault tolerance and more complex support for multithreaded programming, because the Forum decided that current proposals were not quite ready for standardization. The Forum continues to work on these and other issues. Martin Schulz, Computer Scientist at Lawrence Livermore National Laboratory and current chairperson of the MPI-3 Forum, says, “As MPI has established itself as the dominant standard in HPC, it has been exciting and rewarding to see that the members of the MPI forum have not been resting on their laurels. Instead, the Forum continues to drive innovation balanced with the pragmatism necessary for a standards document as we race towards exascale as well as to embrace new commercial application fields and their different requirements.”

Many of the participants in this decades-long effort will speak at the “25 Years of MPI” symposium during the EuroMPI Workshop to be held at Argonne National Laboratory near Chicago on September 25-27, 2017.

About the Authors

Ewing “Rusty” Lusk is Argonne Distinguished Fellow Emeritus at Argonne National Laboratory.

Prof. Jesper Larsson Träff is on the Faculty of Informatics at the Vienna University of Technology.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UT Dallas Grows HPC Storage Footprint for Animation and Game Development

October 28, 2020

Computer-generated animation and video game development are extraordinarily computationally intensive fields, with studios often requiring large server farms with hundreds of terabytes – or even petabytes – of storag Read more…

By Staff report

Frame by Frame, Supercomputing Reveals the Forms of the Coronavirus

October 27, 2020

From the start of the pandemic, supercomputing research has been targeting one particular protein of the coronavirus: the notorious “S” or “spike” protein, which allows the virus to pry its way into human cells a Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. The acquisition helps AMD keep pace during a time of consolida Read more…

By John Russell

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

AWS Solution Channel

Rapid Chip Design in the Cloud

Time-to-market and engineering efficiency are the most critical and expensive metrics for a chip design company. With this in mind, the team at Annapurna Labs selected Altair AcceleratorRead more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. Th Read more…

By John Russell

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This