NEC to Release Novel Vector Architecture that Delivers Superior Sustained Application Performance and Power Efficiency

By Louis Vistola

May 2, 2017

High performance computing workflows in many industries are limited by memory bandwidth requirements, which are not satisfied by standard architectures. If memory bandwidth is a bottleneck, the sustained performance of real scientific applications will be limited.

Workflows impacted by a lack of memory bandwidth include a very broad range of applications such as computational fluid dynamics, structural analysis, and many applications that model physical systems. Much of the code used in these workflows can be well-adapted to vector processing. Specifically, the underlying code structures exhibit inherent parallelism, often only obscured by the programming style and not by the underlying mathematics. The lack of architectures really addressing the so-called memory wall was contemplated for many years in the HPC-community.

With these issues in mind, NEC will soon introduce a new vector-architecture nick-named Aurora, a solution that uses its industry-leading vector processor technology tightly coupled with industry standard scalar technology.

Expanding the use of vector processing

Organizations today must find ways to speed the time to results. The best way to accomplish this is to accelerate modeling and simulation algorithms. This offers many benefits. Individual jobs run faster, freeing up systems to run other workloads. And individuals or groups can more quickly explore different possibilities by modifying parameters, running more variations of the same job. But this speedup should not come at the price of increased coding complexity.

While some workloads benefit from acceleration technology such as GPUs, this benefit can only be achieved as a result of a large porting effort. An alternative that can be used on broad classes of applications is vector processing. Vector processing can satisfy the underlying need for memory bandwidth and thus leads to higher sustained performance without the need to rephrase huge amounts of codes in terms of complicated coding paradigms.

Today there is a growing need to make use of vector processing in a wide variety of industries. However, in most companies require a change in mindset. In the past some organizations have been hesitant about moving to vector processing because they either did not want to change their code or they thought it would be too much work.

That is no longer the case. Vectorization is close to inevitable on every platform, and therefore codes are adapted anyway. And in any case, smart optimization techniques like cache-blocking on scalar platforms are more difficult to apply than vectorization, let alone to rewrite a code using OpenCL or CUDA.

What is needed is a solution that delivers the desired performance benefits while allaying these concerns. Additionally, the system should be efficient in terms of performance per dollar or Watt. And their usage should also enable the scientist to work effectively.

A technology partner that can help

While almost all contemporary architectures utilize single instruction, multiple data (SIMD) parallelism in some way, only one vendor, NEC, is offering an architecture with real vector registers, entities which provide data to functional units continuously for a sequence of cycles by just one instruction.

Building on its long history developing vector processing systems for the most demanding workloads, NEC’s new Aurora vector system is designed to accelerate traditional memory bandwidth-intensive HPC workloads, as well as other applications such as big data analytics.

The solution is not just an accelerator that speeds up a small portion of code, as would be the case when using GPUs. Instead, the full code will run on a so-called vector engine, an accompanying x86-based platform just acts as kind of a frontend and a development environment.

Three design concepts guided the development of Aurora. They include:

Industry leading memory bandwidth performance: The individual cores of the new vector architecture will be  quite fast and can run code more efficiently. Similar to NEC’s SX Series, the solution offers industry-leading memory bandwidth per processor, core, power, and price. The cores are tailored to memory-intensive scientific applications and big data analytics applications.

Ease of use: Aurora offers a dedicated vector hardware/software environment. Specifically,

NEC’s optimized vector processing hardware and software are combined with a de facto standard environment such as Xeon clusters. This allows a workflow to start on an x86 system, and differently from accelerators, the entire application is passed to the vector engine. The x86-system supports the vector engine like a frontend, taking away all workload that does not relate to the application, daemons, and administrative processes.

Flexibility afforded by a hybrid solution: Aurora offers closely aligned scalar and vector machines. They can be used in hybrid configurations to tackle every kind of application, providing the appropriate hardware for each kind of code of a workload or workflow. This capability can be used in a workflow, for example, that requires pre- and post-processing of data or in a simulation such as a climate simulation that involves ocean code that needs vector processing and some atmospheric chemistry code that runs better on a scalar system. Software integration will include a common parallel filesystem, common scheduling, and an MPI that allows organizations to use both scalar and vector nodes in one application.

Summary

Organizations in many industries currently run simulation, modeling, and big data analytics applications that are limited because of memory bandwidth. Vector processors can deliver the necessary performance, but a solution must also be easy to use offering a standard environment and use of familiar Xeon clusters. Additionally, since many workflows include a mix of code where some algorithms can benefit from vector processing and others run more efficiently on scalar processors, any solution must be flexible allowing for such hybrid operations.

These are all areas where NEC Aurora can help. Aurora is a next-generation product that is designed to expand the use of the technology from traditional HPC problems to include a broader class of memory bandwidth-intensive applications used in organizations today.

NEC plans to make Aurora available for different environments including a rack-mounted server and supercomputer models, and it will be offered in a tower server model as well, so every scientist can develop code without continuous access to a high-end system.

For more information about meeting the demands of your memory bandwidth-intensive applications and workloads, visit: http://uk.nec.com/en_GB/emea/products/hpc/index.html

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire