IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

By Doug Black

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-ramping while reducing deep learning training times, according to Big Blue, from weeks to hours with a new, distributed version of TensorFlow running on clusters.

The new PowerAI software is comprised of four primary parts:

  • “AI Vision,” a tool designed for developers with limited knowledge of deep learning to train and deploy deep learning models for computer vision.
  • Integration with IBM Spectrum Conductor cluster virtualization software that integrates Apache Spark to ease transforming unstructured and structured data sets to prepare them for deep learning training.
  • A distributed computing version of TensorFlow, the open-source machine learning framework built by Google, that can run on a virtualized cluster of GPU-accelerated servers, which IBM said cuts learning training time from weeks to hours.
  • “DL Insight,” a new tool that helps data scientists to sharpen the accuracy of deep learning models by monitoring the deep learning training process and automatically adjusting parameters for peak performance.

“We’re adding a set of tools to ease development for data scientists and we’re adding a set of features that accelerate the training time,” IBM’s VP, HPC, AI and Analytic, Sumit Gupta, told EnterpriseTech (HPCwire’s sister publication). “PowerAI makes it much easier for data scientists and developers to use AI to build their applications, rather than having to write complicated code, worry about cluster management, and issues of that kind.”

IBM PowerAI software is “curated, tested, and pre-packaged distribution of the major deep learning frameworks,” including TensorFlow, Caffe, Torch, Theano, Chainer, NVIDIA DIGITS, among others. In making the announcement, IBM called attention to what it said are the performance advantages of GPU-driven AI implementations on the IBM Power Systems S822LC for HPC server, for which PowerAI is optimized.

The server combines IBM POWER processors and NVIDIA GPUs, embedded with a high-speed data interface between the POWER processor and the NVIDIA GPU (NVLink), IBM said. This coupling delivers higher performance in AI training, enabling developers to try new models, parameter settings and data sets at a faster pace, according to IBM.

“IBM PowerAI on Power servers with GPU accelerators provide at least twice the performance of our x86 platform,” said Ari Juntunen, CTO at Elinar Oy Ltd, an electronic content management company. “Everything is faster and easier: adding memory, setting up new servers and so on. As a result, we can get new solutions to market very quickly, protecting our edge over the competition. We think that the combination of IBM Power and PowerAI is the best platform for AI developers in the market today. For AI, speed is everything —nothing else comes close in our opinion.”

IBM also cited the example of Korean Electric Power Research Institution (KEPRI), which wanted to use drones for inspection of high-voltage power lines.

“We needed a deep learning and high speed storage platform that could process and store the vast number of images/videos we receive from the drones,” said KEPRI’s Chan-Wook Lim. “(PowerAI) has met those needs, allowing us to improve our system while also providing a cost reduction for our inspections.”

IBM’s Gupta said KEPRI is typical of the kind of computer vision workloads PowerAI and AI Vision is designed to simplify.

Sumit Gupta, IBM

“The time consuming part of it is using a framework like TensorFlow on a 100M images,” he said. “You run into a challenge when you have a 100M images that need to be transformed and prepped to be input into TensorFlow. We automate the data prep and ETL using Spectrum Conductor…, it automatically launches underneath a whole cluster of Spark jobs, each one of them is running and transforming 5 million of those images at a time. From a user perspective, they don’t even know that…it went and launched a whole lot of jobs on a cluster, all they know is that the data is getting transformed.”

“Data scientists and an emerging community of cognitive developers will lead much of the innovation in the cognitive era. Our objective with PowerAI is to make their journey to AI as easy, intuitive and productive as possible,” said Bob Picciano, senior vice president, IBM Cognitive Systems. “Power AI reduces the also reduce frustration of waiting and increase productivity. Power Systems were designed for data and this next era of computing, in great contrast to x86 servers which were designed for the client/server

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and received a patent for a "processor design, which allows rep Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This