Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

By Tiffany Trader

May 10, 2017

At Nvidia’s GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company’s much-anticipated Volta architecture and flagship high-end GPU, the Tesla V100, noting that it took several thousand engineers several years to create, at an approximate development cost of $3 billion.

One thing is undeniable about the Volta V100: it is a giant chip, 33 percent larger than the Pascal P100 and once again “the biggest GPU ever made.” Fabricated by TSMC on a custom 12-nm FFN high performance manufacturing process, the V100 GPU squeezes 21.1 billion transistors and almost 100 billion via connectors on an 815 mm2 die, about the size of the Apple watch, said Huang.

“It is at the limits of photolithography,” Huang told the crowd. “You can’t make a chip any bigger than this because transistors would fall on the ground. Every single transistor that is possible to make by today’s physics was crammed into this processor.”

“To make one chip work per 12-inch wafer, I would characterize as unlikely,” added the CEO. “And so the fact that this was manufactured was a great feat.”

This is a domain specific chip, said Jonah Alben, senior vice president of GPU engineering at Nvidia. “This chip can run games very well if we want it to, but the focus [of the V100] is to be a great chip for AI and for HPC, so we dedicated all the resources we could until it was illegal to do more.”

“The first thing to know about Volta is it a giant leap for machine learning,” Luke Durant, principal engineer, CUDA Software, Nvidia followed. “[However,] we still are completely focused on high-performance computing. Across the board we’re seeing about a 1.5x speedup as compared to Pascal, just one year ago.”

Volta is a major launch for Nvidia, but not exactly a surprise. Back in 2014, the architecture was tapped to power the next-generation CORAL supercomputers, Summit and Sierra, in partnership with IBM, Mellanox and the Department of Energy. Those computers, expected to reach at least 200 petaflops of performance, are now due to be installed later this year into early 2018.

The new V100 touts spec’d performance of 7.5 teraflops double-precision, 15 teraflops single-precision, and 30 teraflops half-precision. This is nearly a 42 percent increase in peak flops over one year.

The Volta architecture introduces a brand new type of processor, Tensor Core, designed to accelerate AI workloads. With 640 Tensor Cores (8 per SM), V100 delivers 120 teraflops of deep learning performance, providing 6-12 times higher peak teraflops for Tensor operations compared with previous-generation silicon.

Volta is also slated to provide up to 60 tera-ops of INT8 performance. Nvidia kept the INT8 instructions to maintain compatibility with existing code bases and also reported that having a dedicated integer unit on Volta would help write machine learning kernels.

Tesla comparison over the last five years. Source: Nvidia. Click to Expand.

“With the V100, the most important statement isn’t the raw performance, although Nvidia managed to raise eyebrows with that,” commented Intersect360 Research CEO Addison Snell. “It’s that they are designing chips for double-precision 64-bit performance, single-precision 32-bit performance, or tensor performance, in the same package, so a single processor targets a range of applications in AI and HPC.”

Volta comes with 6MB of L2 cache and 16GB of HBM2 memory, providing 900 GB/s of bandwidth. The SMX2 form factor V100 features NVLink2 connectivity with nearly twice the throughput of the prior generation NVLink, going from 160 GB/s to 300 GB/s. Designers accomplished this by adding 50 percent more links and running them 28 percent faster.

Similar to the Pascal GP100, the Volta GV100 SM incorporates 64 FP32 cores and 32 FP64 cores per SM, however the new GPU has 80 SMs compared with 56 on the GP100. It thus has many more registers and supports more threads, warps, and thread blocks compared with previous Tesla generation GPUs, according to Nvidia.

Major features of the Volta SM include:

+ New mixed-precision FP16/FP32 Tensor Cores purpose-built for deep learning matrix arithmetic.

+ Enhanced L1 data cache for higher performance and lower latency.

+ Streamlined instruction set for simpler decoding and reduced instruction latencies.

+ Higher clocks and higher power efficiency.

“It has a completely different instruction set than Pascal,” remarked Bryan Catanzaro, vice president, Applied Deep Learning Research at Nvidia. “It’s fundamentally extremely different. Volta is not Pascal with Tensor Core thrown onto it – it’s a completely different processor.”

Catanzaro, who returned to Nvidia from Baidu six months ago, emphasized how the architectural changes wrought greater flexibility and power efficiency.

“It’s worth noting that Volta has the biggest change to the GPU threading model basically since I can remember and I’ve been programming GPUs for a while,” he said. “With Volta we can actually have forward progress guarantees for threads inside the same warp even if they need to synchronize, which we have never been able to do before. This is going to enable a lot more interesting algorithms to be written using the GPU, so a lot of code that you just couldn’t write before because it potentially would hang the GPU based on that thread scheduling model is now possible. I’m pretty excited about that, especially for some sparser kinds of data analytics workloads there’s a lot of use cases where we want to be collaborating between threads in more complicated ways and Volta has a thread scheduler can accommodate that.

“It’s actually pretty remarkable to me that we were able to get more flexibility and better performance-per-watt. Because I was really concerned when I heard that they were going to change the Volta thread scheduler that it was going to give up performance-per-watt, because the reason that the old one wasn’t as flexible is you get a lot of energy efficiency by ganging up threads together and having the capability to let the threads be more independent then makes me worried that performance-per-watt is going to be worse, but actually it got better, so that’s pretty exciting.”

Added Alben: “This was done through a combination of process and architectural changes but primarily architecture. This was a very significant rewrite of the processor architecture. The Tensor Core part is obviously very [significant] but even if you look at FP32 and FP64, we’re talking about 50 percent more performance in the same power budget as where we’re at with Pascal. Every few years, we say, hey we discovered something really cool. We basically discovered a new architectural approach we could pursue that unlocks even more power efficiency than we had previously. The Volta SM is a really ambitious design; there’s a lot of different elements in there, obviously Tensor Core is one part, but the architectural power efficiency is a big part of this design.”

 

Nvidia showed off three different V100 form factors at GTC: the 300 watt SXM2 (mezzanine) module; an inferencing accelerator for hyperscale that is a 150 watt full height, half length (FHHL) PCIe card about the size of a CD case; and the standard PCIe two-slot, full-length card.

DGX-1 with eight V100s

V100 GPUs will be available starting next quarter, according to Nvidia. Customers can pre-order the Volta-series DGX-1 box now for $149,000, $20,000 more than the list price for the Pascal-equipped version.

In addition to the coming DGX-1 Volta refresh, Nvidia also released the new DGX Station. Billed as a “personal supercomputer for AI development,” DGX Station provides four NVLink-connected Tesla V100s to deliver 480 (peak) Tensor teraflops in a 1,500 watt water-cooled chassis for $69,000.

Riding the wave of AI and HPC announcements made this week and on the heels of a stronger-than-expected first quarter (recording revenue of $1.94 billion with record datacenter sales of $409 million), Nvidia shares were up 18 percent as of close of market Wednesday, reaching $121.29, an all-time high.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This