Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

By Tiffany Trader

May 10, 2017

At Nvidia’s GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company’s much-anticipated Volta architecture and flagship high-end GPU, the Tesla V100, noting that it took several thousand engineers several years to create, at an approximate development cost of $3 billion.

One thing is undeniable about the Volta V100: it is a giant chip, 33 percent larger than the Pascal P100 and once again “the biggest GPU ever made.” Fabricated by TSMC on a custom 12-nm FFN high performance manufacturing process, the V100 GPU squeezes 21.1 billion transistors and almost 100 billion via connectors on an 815 mm2 die, about the size of the Apple watch, said Huang.

“It is at the limits of photolithography,” Huang told the crowd. “You can’t make a chip any bigger than this because transistors would fall on the ground. Every single transistor that is possible to make by today’s physics was crammed into this processor.”

“To make one chip work per 12-inch wafer, I would characterize as unlikely,” added the CEO. “And so the fact that this was manufactured was a great feat.”

This is a domain specific chip, said Jonah Alben, senior vice president of GPU engineering at Nvidia. “This chip can run games very well if we want it to, but the focus [of the V100] is to be a great chip for AI and for HPC, so we dedicated all the resources we could until it was illegal to do more.”

“The first thing to know about Volta is it a giant leap for machine learning,” Luke Durant, principal engineer, CUDA Software, Nvidia followed. “[However,] we still are completely focused on high-performance computing. Across the board we’re seeing about a 1.5x speedup as compared to Pascal, just one year ago.”

Volta is a major launch for Nvidia, but not exactly a surprise. Back in 2014, the architecture was tapped to power the next-generation CORAL supercomputers, Summit and Sierra, in partnership with IBM, Mellanox and the Department of Energy. Those computers, expected to reach at least 200 petaflops of performance, are now due to be installed later this year into early 2018.

The new V100 touts spec’d performance of 7.5 teraflops double-precision, 15 teraflops single-precision, and 30 teraflops half-precision. This is nearly a 42 percent increase in peak flops over one year.

The Volta architecture introduces a brand new type of processor, Tensor Core, designed to accelerate AI workloads. With 640 Tensor Cores (8 per SM), V100 delivers 120 teraflops of deep learning performance, providing 6-12 times higher peak teraflops for Tensor operations compared with previous-generation silicon.

Volta is also slated to provide up to 60 tera-ops of INT8 performance. Nvidia kept the INT8 instructions to maintain compatibility with existing code bases and also reported that having a dedicated integer unit on Volta would help write machine learning kernels.

Tesla comparison over the last five years. Source: Nvidia. Click to Expand.

“With the V100, the most important statement isn’t the raw performance, although Nvidia managed to raise eyebrows with that,” commented Intersect360 Research CEO Addison Snell. “It’s that they are designing chips for double-precision 64-bit performance, single-precision 32-bit performance, or tensor performance, in the same package, so a single processor targets a range of applications in AI and HPC.”

Volta comes with 6MB of L2 cache and 16GB of HBM2 memory, providing 900 GB/s of bandwidth. The SMX2 form factor V100 features NVLink2 connectivity with nearly twice the throughput of the prior generation NVLink, going from 160 GB/s to 300 GB/s. Designers accomplished this by adding 50 percent more links and running them 28 percent faster.

Similar to the Pascal GP100, the Volta GV100 SM incorporates 64 FP32 cores and 32 FP64 cores per SM, however the new GPU has 80 SMs compared with 56 on the GP100. It thus has many more registers and supports more threads, warps, and thread blocks compared with previous Tesla generation GPUs, according to Nvidia.

Major features of the Volta SM include:

+ New mixed-precision FP16/FP32 Tensor Cores purpose-built for deep learning matrix arithmetic.

+ Enhanced L1 data cache for higher performance and lower latency.

+ Streamlined instruction set for simpler decoding and reduced instruction latencies.

+ Higher clocks and higher power efficiency.

“It has a completely different instruction set than Pascal,” remarked Bryan Catanzaro, vice president, Applied Deep Learning Research at Nvidia. “It’s fundamentally extremely different. Volta is not Pascal with Tensor Core thrown onto it – it’s a completely different processor.”

Catanzaro, who returned to Nvidia from Baidu six months ago, emphasized how the architectural changes wrought greater flexibility and power efficiency.

“It’s worth noting that Volta has the biggest change to the GPU threading model basically since I can remember and I’ve been programming GPUs for a while,” he said. “With Volta we can actually have forward progress guarantees for threads inside the same warp even if they need to synchronize, which we have never been able to do before. This is going to enable a lot more interesting algorithms to be written using the GPU, so a lot of code that you just couldn’t write before because it potentially would hang the GPU based on that thread scheduling model is now possible. I’m pretty excited about that, especially for some sparser kinds of data analytics workloads there’s a lot of use cases where we want to be collaborating between threads in more complicated ways and Volta has a thread scheduler can accommodate that.

“It’s actually pretty remarkable to me that we were able to get more flexibility and better performance-per-watt. Because I was really concerned when I heard that they were going to change the Volta thread scheduler that it was going to give up performance-per-watt, because the reason that the old one wasn’t as flexible is you get a lot of energy efficiency by ganging up threads together and having the capability to let the threads be more independent then makes me worried that performance-per-watt is going to be worse, but actually it got better, so that’s pretty exciting.”

Added Alben: “This was done through a combination of process and architectural changes but primarily architecture. This was a very significant rewrite of the processor architecture. The Tensor Core part is obviously very [significant] but even if you look at FP32 and FP64, we’re talking about 50 percent more performance in the same power budget as where we’re at with Pascal. Every few years, we say, hey we discovered something really cool. We basically discovered a new architectural approach we could pursue that unlocks even more power efficiency than we had previously. The Volta SM is a really ambitious design; there’s a lot of different elements in there, obviously Tensor Core is one part, but the architectural power efficiency is a big part of this design.”

 

Nvidia showed off three different V100 form factors at GTC: the 300 watt SXM2 (mezzanine) module; an inferencing accelerator for hyperscale that is a 150 watt full height, half length (FHHL) PCIe card about the size of a CD case; and the standard PCIe two-slot, full-length card.

DGX-1 with eight V100s

V100 GPUs will be available starting next quarter, according to Nvidia. Customers can pre-order the Volta-series DGX-1 box now for $149,000, $20,000 more than the list price for the Pascal-equipped version.

In addition to the coming DGX-1 Volta refresh, Nvidia also released the new DGX Station. Billed as a “personal supercomputer for AI development,” DGX Station provides four NVLink-connected Tesla V100s to deliver 480 (peak) Tensor teraflops in a 1,500 watt water-cooled chassis for $69,000.

Riding the wave of AI and HPC announcements made this week and on the heels of a stronger-than-expected first quarter (recording revenue of $1.94 billion with record datacenter sales of $409 million), Nvidia shares were up 18 percent as of close of market Wednesday, reaching $121.29, an all-time high.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This