PRACEdays 2017 Wraps Up in Barcelona

By Kim McMahon

May 18, 2017

Guest contributor Kim McMahon shares highlights from the final day of the PRACEdays 2017 conference in Barcelona.

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth look at the oil and gas industry’s use of HPC and a panel discussion on bridging the gap between scientific code development and exascale technology.

Henri Calandra of Total SA spoke on the challenges of increased HPC complexity and value delivery for the oil and gas industry.

The main challenge Total and other oil and gas companies are finding is that discoveries of oil deposits are becoming more rare. To stay competitive, they need to first and foremost open new frontiers for oil discovery, but do this while reducing risk and costs.

In the 1980s, seismic data was reviewed in the 2 dimensional space. The 1990’s started development of 3D seismic depth imaging. Continuing into the 2000’s, 3D depth imaging was improved as wave equations were added to the traditional imaging. The 2010’s brought more physics, more accurate images, and more complex processes to visually view the seismic data.

Henri Calandra of Total SA – click to enlarge

The industry continues to see drastic improvements. A seismic simulation that in 2010 took four weeks to run, in 2016 takes one day. Images have significantly higher resolution and the amount of detail seen in the images enables Total to be more precise in identifying seismic fields and potential hazards in drilling.

If you look closely at the pictures (shown on the slide), you can make out improvements the image quality. Although it may seem slight to our eye, the geoscientist can see the small nuances in the images that help them be more precise, identify hazards, and achieve a better positive acquisition rate.

How did this change over the last 30+ years happen? Improved technology, integrating more advanced technologies, improved processes, more physics, more complex algorithms – basically more HPC.

Using HPC, Total has been able to reduce their risks, become more precise and selective on their explorations, identify potential oil fields faster, and optimize their seismic depth imaging.

What’s next: Opening new frontiers enabled by the better appraisal of potential new opportunities. HPC has enabled seismic depth imaging methods that can do more iterations, more physics, and more complex approximations. Models are larger, there are multiple resolutions, and 4D data. There is interactive processing happening during the drilling and these multi real-time simulations allow adjustments to the drilling, thus improving the success rate of finding oil.

Developing new algorithms is a long-term process and typically last across several generations of supercomputers. Of course, the oil and gas industry is looking forward to exascale. But the future is complex — in the compute in the form of manycore, with accelerators, and heterogeneous systems. Complexity in the storage with the abundance of data and movement between tiers of storage via multiple storage technologies. Complexity in the tools such as OpenCL, CUDA, OpenMP, OpenACC, and compilers. There is a need for standardized tools to hide the hardware complexity and help the users of the HPC systems.

None of this can be addressed without HPC specialists. Application development cannot be done without a strong collaboration between the physicist, scientist, and HPC team. This constant progress will continue to improve the predictions Total relies on for finding productive oil fields.

The second session of the day was a panel moderated by Inma Martinez: titled “Bridging the gap between scientific code development and exascale technology.” Much of the focus was on the software challenges for extreme scale computing faced by the community.

The panelists:

Henri Calandra: Total

Lee Margetts: NAFEMS

Erik Lindahl: PRACE Scientific Steering Committee

Frauke Gräter: Heidelberg Institute for Theoretical Studies

Thomas Skordas, European Commission

This highly anticipated session looked at the gap between hardware, software, and application advances and the role of industry, academia and the European Commission in the development of software for HPC systems.

Thomas Skordas pointed out that driving leadership in exascale is important and it’s about much more than hardware. It’s the next generation code, training, and understanding the opportunities exascale can accomplish.

Frauke Gräter sees data as a significant challenge; the accumulation of more and more data and the analysis of that data. In the end, scientists are looking for insights and research organizations will invest in science.

Parallelizing the algorithms is the key action according to Erik Lindahl. There is too much focus on the exascale machine but algorithms need to be good to make the best use of the hardware. Exascale, expected to happen around 2020, is not expected to be a staple in commercial datacenter until 2035. There is not a supercomputer in the world that does not run open source software, and exascale machines will follow this practice.

Lee Margetts talked of “monster machines” — the large compute clusters in every datacenter. As large vendors adopt artificial intelligence and machine learning, will we see the end of the road for the large “monster” machines? We have very sophisticated algorithms and are using very sophisticated computing. What if this technology that is used in something like oil and gas were used to predict volcanoes or earthquakes — the point being, can technologies be used for more than one science?

Henri Calandra noted that data analytics and storage will become a huge issue. If we move to exascale, we’ll have to deal with thousands of compute nodes and update code for all these machines.

The biggest challenge is the software challenge.

When asked about the new science we will see, the panel had answers that fit their sphere of knowledge. Thomas spoke of brain modeling and self-driving cars. Frauke added genome assembly and new scientific disciplines such as personalized medicine. She says, “To attract young people, we need to marry machine learning and deep learning into HPC.” Erik notes that we have a revolution of data because of accelerators. Data and accelerators enabling genome resource will drive research in this area. Lee spoke of integrating machine learning into manufacturing processes.

Kim McMahon, XAND McMahon

As Lee said, “Diversity in funding through the European commission is really important – we need to fund the mavericks as well as the crazy ones.”

My takeaway is that the accomplishment of an exascale machine is not the goal that will drive the technology forward. It’s the analysis of the data. The algorithms. Parallelizing code. There will be some who will buy the exascale machine, but it will be years after it’s available before it’s broadly accepted. As Lee said, “the focus is not the machine, the algorithms or the software, but delivering on the science. Most people in HPC are domain scientists who are trying to solve a problem.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

SDSC Researchers Use Machine Learning to More Accurately Model Water

June 13, 2018

Water – H2O – is a simple but fascinating (and useful) compound. San Diego Supercomputing Center researchers used machine learning techniques to develop models for simulations of water with “unprecedented accuracy. Read more…

By Staff

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

Japan Starts Up 3-Petaflops ‘ATERUI II’ Cray Supercomputer

June 5, 2018

The world's most powerful supercomputer for astrophysical calculations has begun operations in Japan. The announcement comes from the National Astronomical Obse Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This