PRACEdays 2017 Wraps Up in Barcelona

By Kim McMahon

May 18, 2017

Guest contributor Kim McMahon shares highlights from the final day of the PRACEdays 2017 conference in Barcelona.

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth look at the oil and gas industry’s use of HPC and a panel discussion on bridging the gap between scientific code development and exascale technology.

Henri Calandra of Total SA spoke on the challenges of increased HPC complexity and value delivery for the oil and gas industry.

The main challenge Total and other oil and gas companies are finding is that discoveries of oil deposits are becoming more rare. To stay competitive, they need to first and foremost open new frontiers for oil discovery, but do this while reducing risk and costs.

In the 1980s, seismic data was reviewed in the 2 dimensional space. The 1990’s started development of 3D seismic depth imaging. Continuing into the 2000’s, 3D depth imaging was improved as wave equations were added to the traditional imaging. The 2010’s brought more physics, more accurate images, and more complex processes to visually view the seismic data.

Henri Calandra of Total SA – click to enlarge

The industry continues to see drastic improvements. A seismic simulation that in 2010 took four weeks to run, in 2016 takes one day. Images have significantly higher resolution and the amount of detail seen in the images enables Total to be more precise in identifying seismic fields and potential hazards in drilling.

If you look closely at the pictures (shown on the slide), you can make out improvements the image quality. Although it may seem slight to our eye, the geoscientist can see the small nuances in the images that help them be more precise, identify hazards, and achieve a better positive acquisition rate.

How did this change over the last 30+ years happen? Improved technology, integrating more advanced technologies, improved processes, more physics, more complex algorithms – basically more HPC.

Using HPC, Total has been able to reduce their risks, become more precise and selective on their explorations, identify potential oil fields faster, and optimize their seismic depth imaging.

What’s next: Opening new frontiers enabled by the better appraisal of potential new opportunities. HPC has enabled seismic depth imaging methods that can do more iterations, more physics, and more complex approximations. Models are larger, there are multiple resolutions, and 4D data. There is interactive processing happening during the drilling and these multi real-time simulations allow adjustments to the drilling, thus improving the success rate of finding oil.

Developing new algorithms is a long-term process and typically last across several generations of supercomputers. Of course, the oil and gas industry is looking forward to exascale. But the future is complex — in the compute in the form of manycore, with accelerators, and heterogeneous systems. Complexity in the storage with the abundance of data and movement between tiers of storage via multiple storage technologies. Complexity in the tools such as OpenCL, CUDA, OpenMP, OpenACC, and compilers. There is a need for standardized tools to hide the hardware complexity and help the users of the HPC systems.

None of this can be addressed without HPC specialists. Application development cannot be done without a strong collaboration between the physicist, scientist, and HPC team. This constant progress will continue to improve the predictions Total relies on for finding productive oil fields.

The second session of the day was a panel moderated by Inma Martinez: titled “Bridging the gap between scientific code development and exascale technology.” Much of the focus was on the software challenges for extreme scale computing faced by the community.

The panelists:

Henri Calandra: Total

Lee Margetts: NAFEMS

Erik Lindahl: PRACE Scientific Steering Committee

Frauke Gräter: Heidelberg Institute for Theoretical Studies

Thomas Skordas, European Commission

This highly anticipated session looked at the gap between hardware, software, and application advances and the role of industry, academia and the European Commission in the development of software for HPC systems.

Thomas Skordas pointed out that driving leadership in exascale is important and it’s about much more than hardware. It’s the next generation code, training, and understanding the opportunities exascale can accomplish.

Frauke Gräter sees data as a significant challenge; the accumulation of more and more data and the analysis of that data. In the end, scientists are looking for insights and research organizations will invest in science.

Parallelizing the algorithms is the key action according to Erik Lindahl. There is too much focus on the exascale machine but algorithms need to be good to make the best use of the hardware. Exascale, expected to happen around 2020, is not expected to be a staple in commercial datacenter until 2035. There is not a supercomputer in the world that does not run open source software, and exascale machines will follow this practice.

Lee Margetts talked of “monster machines” — the large compute clusters in every datacenter. As large vendors adopt artificial intelligence and machine learning, will we see the end of the road for the large “monster” machines? We have very sophisticated algorithms and are using very sophisticated computing. What if this technology that is used in something like oil and gas were used to predict volcanoes or earthquakes — the point being, can technologies be used for more than one science?

Henri Calandra noted that data analytics and storage will become a huge issue. If we move to exascale, we’ll have to deal with thousands of compute nodes and update code for all these machines.

The biggest challenge is the software challenge.

When asked about the new science we will see, the panel had answers that fit their sphere of knowledge. Thomas spoke of brain modeling and self-driving cars. Frauke added genome assembly and new scientific disciplines such as personalized medicine. She says, “To attract young people, we need to marry machine learning and deep learning into HPC.” Erik notes that we have a revolution of data because of accelerators. Data and accelerators enabling genome resource will drive research in this area. Lee spoke of integrating machine learning into manufacturing processes.

Kim McMahon, XAND McMahon

As Lee said, “Diversity in funding through the European commission is really important – we need to fund the mavericks as well as the crazy ones.”

My takeaway is that the accomplishment of an exascale machine is not the goal that will drive the technology forward. It’s the analysis of the data. The algorithms. Parallelizing code. There will be some who will buy the exascale machine, but it will be years after it’s available before it’s broadly accepted. As Lee said, “the focus is not the machine, the algorithms or the software, but delivering on the science. Most people in HPC are domain scientists who are trying to solve a problem.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This