PRACEdays 2017 Wraps Up in Barcelona

By Kim McMahon

May 18, 2017

Guest contributor Kim McMahon shares highlights from the final day of the PRACEdays 2017 conference in Barcelona.

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth look at the oil and gas industry’s use of HPC and a panel discussion on bridging the gap between scientific code development and exascale technology.

Henri Calandra of Total SA spoke on the challenges of increased HPC complexity and value delivery for the oil and gas industry.

The main challenge Total and other oil and gas companies are finding is that discoveries of oil deposits are becoming more rare. To stay competitive, they need to first and foremost open new frontiers for oil discovery, but do this while reducing risk and costs.

In the 1980s, seismic data was reviewed in the 2 dimensional space. The 1990’s started development of 3D seismic depth imaging. Continuing into the 2000’s, 3D depth imaging was improved as wave equations were added to the traditional imaging. The 2010’s brought more physics, more accurate images, and more complex processes to visually view the seismic data.

Henri Calandra of Total SA – click to enlarge

The industry continues to see drastic improvements. A seismic simulation that in 2010 took four weeks to run, in 2016 takes one day. Images have significantly higher resolution and the amount of detail seen in the images enables Total to be more precise in identifying seismic fields and potential hazards in drilling.

If you look closely at the pictures (shown on the slide), you can make out improvements the image quality. Although it may seem slight to our eye, the geoscientist can see the small nuances in the images that help them be more precise, identify hazards, and achieve a better positive acquisition rate.

How did this change over the last 30+ years happen? Improved technology, integrating more advanced technologies, improved processes, more physics, more complex algorithms – basically more HPC.

Using HPC, Total has been able to reduce their risks, become more precise and selective on their explorations, identify potential oil fields faster, and optimize their seismic depth imaging.

What’s next: Opening new frontiers enabled by the better appraisal of potential new opportunities. HPC has enabled seismic depth imaging methods that can do more iterations, more physics, and more complex approximations. Models are larger, there are multiple resolutions, and 4D data. There is interactive processing happening during the drilling and these multi real-time simulations allow adjustments to the drilling, thus improving the success rate of finding oil.

Developing new algorithms is a long-term process and typically last across several generations of supercomputers. Of course, the oil and gas industry is looking forward to exascale. But the future is complex — in the compute in the form of manycore, with accelerators, and heterogeneous systems. Complexity in the storage with the abundance of data and movement between tiers of storage via multiple storage technologies. Complexity in the tools such as OpenCL, CUDA, OpenMP, OpenACC, and compilers. There is a need for standardized tools to hide the hardware complexity and help the users of the HPC systems.

None of this can be addressed without HPC specialists. Application development cannot be done without a strong collaboration between the physicist, scientist, and HPC team. This constant progress will continue to improve the predictions Total relies on for finding productive oil fields.

The second session of the day was a panel moderated by Inma Martinez: titled “Bridging the gap between scientific code development and exascale technology.” Much of the focus was on the software challenges for extreme scale computing faced by the community.

The panelists:

Henri Calandra: Total

Lee Margetts: NAFEMS

Erik Lindahl: PRACE Scientific Steering Committee

Frauke Gräter: Heidelberg Institute for Theoretical Studies

Thomas Skordas, European Commission

This highly anticipated session looked at the gap between hardware, software, and application advances and the role of industry, academia and the European Commission in the development of software for HPC systems.

Thomas Skordas pointed out that driving leadership in exascale is important and it’s about much more than hardware. It’s the next generation code, training, and understanding the opportunities exascale can accomplish.

Frauke Gräter sees data as a significant challenge; the accumulation of more and more data and the analysis of that data. In the end, scientists are looking for insights and research organizations will invest in science.

Parallelizing the algorithms is the key action according to Erik Lindahl. There is too much focus on the exascale machine but algorithms need to be good to make the best use of the hardware. Exascale, expected to happen around 2020, is not expected to be a staple in commercial datacenter until 2035. There is not a supercomputer in the world that does not run open source software, and exascale machines will follow this practice.

Lee Margetts talked of “monster machines” — the large compute clusters in every datacenter. As large vendors adopt artificial intelligence and machine learning, will we see the end of the road for the large “monster” machines? We have very sophisticated algorithms and are using very sophisticated computing. What if this technology that is used in something like oil and gas were used to predict volcanoes or earthquakes — the point being, can technologies be used for more than one science?

Henri Calandra noted that data analytics and storage will become a huge issue. If we move to exascale, we’ll have to deal with thousands of compute nodes and update code for all these machines.

The biggest challenge is the software challenge.

When asked about the new science we will see, the panel had answers that fit their sphere of knowledge. Thomas spoke of brain modeling and self-driving cars. Frauke added genome assembly and new scientific disciplines such as personalized medicine. She says, “To attract young people, we need to marry machine learning and deep learning into HPC.” Erik notes that we have a revolution of data because of accelerators. Data and accelerators enabling genome resource will drive research in this area. Lee spoke of integrating machine learning into manufacturing processes.

Kim McMahon, XAND McMahon

As Lee said, “Diversity in funding through the European commission is really important – we need to fund the mavericks as well as the crazy ones.”

My takeaway is that the accomplishment of an exascale machine is not the goal that will drive the technology forward. It’s the analysis of the data. The algorithms. Parallelizing code. There will be some who will buy the exascale machine, but it will be years after it’s available before it’s broadly accepted. As Lee said, “the focus is not the machine, the algorithms or the software, but delivering on the science. Most people in HPC are domain scientists who are trying to solve a problem.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This