Interview with PRACE Ada Lovelace Award Winner Dr. Frauke Gräter

By Tiffany Trader

June 1, 2017

Bioscientist Dr. Frauke Gräter of the Heidelberg Institute for Theoretical Studies and University of Heidelberg was awarded the second annual PRACE Ada Lovelace Award for HPC at PRACEdays17 in Barcelona last month. Using advanced supercomputing techniques to reverse-engineer the mysteries of nature, Gräter is on the vanguard of the exciting field of materials science.

The PRACE Ada Lovelace Award was created to recognize women who have made outstanding contributions to high-performance computing research in Europe. It is named in honor of English mathematician Augusta Ada Byron Lovelace (1815-1852), credited with being the world’s first computer programmer. Winners receive €1,000 as well as a certificate and an engraved crystal trophy.

Dr. Frauke Gräter (left) with Dr. Toni Collis at PRACEdays17

As leader of the molecular biomechanics group at the Heidelberg Institute for Theoretical Studies, Gräter runs advanced computational techniques on some of Europe’s largest supercomputers to study how mechanical forces impact bio-compatible materials, like blood, silk and nacre (the iridescent substance commonly known as mother of pearl). Her project, “Micromechanics of Biocomposite Materials,” was awarded 11.5 million core hours on the Hermit supercomputer (a precursor to “Hazel Hen” at the High Performance Supercomputer Center Stuttgart) by PRACE under the 9th Call for Proposals for Project Access.

Women in HPC Executive Director and founder Dr. Toni Collis presented Gräter with the award during a ceremony on the final day of PRACEdays17. I had a chance to speak with Dr. Gräter afterwards about her research goals, expectations for exascale, and views on attracting more women into HPC.

HPCwire: Congratulations on winning the PRACE Ada Lovelace award — what does it mean to you?

Dr. Frauke Gräter: It’s an honor and there’s a need for emphasizing women in HPC. I’m happy to represent women in HPC research, but I do think though that in the end women need to compete overall with men, so hopefully there are also good reasons to award more standard prizes to women.

HPCwire: We’re here at PRACEdays in lovely Barcelona, what is the significance of PRACE for your research?

Gräter: It’s an enabler and a very important infrastructure. We do profit from PRACE, not just practically — I do computations on PRACE computers but also in terms of the visibility and political impact. PRACE is very important to make people in Europe, especially politicians, aware that [HPC] is an important scientific tool.

HPCwire: And as a computational resource, how significant is it to your work?

Gräter: I would say in the last few years, 10 or 20 percent of our HPC time we got through PRACE, so it’s not a majority. Because we are in Germany, we are well off in terms of supercomputing centers, so we mainly directly send our proposals there; it’s a very efficient route. Forschungszentrum Jülich, HLRS [High Performance Supercomputer Center Stuttgart] and SuperMUC [Leibniz Supercomputing Centre] is where we also do calculations, so PRACE is an interesting add-on but I see that within the European Union for some other countries this is the way to get computing time.

HPCwire: What is the work of the molecular biomechanics group at Heidelberg University?

A small mother of pearl shell nested inside an abalone shell. Source: Shutterstock

Gräter: We work in one part on materials that nature has made that are fascinating and also from an application point of view interesting, which is silk and nacre – actually this award was partly because of our work with nacre. Nacre is also known as mother of pearl. It’s mainly just like chalk, so a very cheap material, calcium carbonate that you find everywhere. It’s very regular and on a nanometer scale. There are protein layers in between these crystal tablets and this makes nacre so special. With the computer we model the interactions of the living net of protein of the inorganic material, the calcium carbonate. This shiny material inside shells is mechanically so robust – it’s a way that shells protect themselves.

HPCwire: What are some of the real-world benefits of your research to society?

Gräter: Industry tries to substitute other materials like steel with more lightweight materials, also bio-compatible materials. Both nacre and silicon are candidates, not necessarily to use them directly but if you understand the way nature has built them, to mimic these features, these strategies in synthetic materials, that’s the attempt — and computer simulations can very much help in seeing what are the screws we can use to make artificial materials better than they are now.

HPCwire: We are seeing more attention to diversity and inclusion in HPC — what can the community do to encourage broader engagement in science and computing (STEM/MINT*) fields?

Gräter: I think efforts on all levels are needed, and I do see them happening. We just had a girls day at the institute where school girls would come and look at how to work at the computer because I think in many cases that boys really like to play more computer games than girls. That’s one entrance way. Then they start to program and think it’s fun and want to do science with it. You don’t find this for girls as much; you find them mostly interested in the topics. They want to learn about how this protein in your body works and then the computer is a good tool one can use to explore. Girls are in medicine and biology, they want to know the mechanism in the body, so in the lab you find women and then they come to computers as a very good tool to learn even more. This is a way that I think we can attract females into the field, by the scientific question not so much by pushing them into the next programming class, so to say. First the motivation, then the programming – more by curiousity, this is what was my motivation.

HPCwire: Can you point to positive signs and actions you are witnessing?

Gräter: So in Germany, these girls days have been implemented in many cities and universities, and then there are some mentoring networks available, especially to women early career researchers, so I see many initiatives. It still really hasn’t gone all the way, of course, but it needs time. I do see positive developments. I for example always had a fairly okay male-to-female ratio in the group; and I think being a role model in the lectures myself is helpful.

HPCwire: Are you seeing greater involvement of women at events, on panels?

Gräter: I think it is now expected to have a woman on the panel – it’s a good thing, but I think a quota here would be very problematic because you might end up with a woman that’s not in terms of her expertise considered appropriate for the panel. I think this consciousness is there so it happens, but I’m not fond of quotas for these things. It can make things go backwards; this I see problematic.

HPCwire: You participated in the closing panel [at PRACEdays], “The gap between scientific code development and exascale technology” — would you share some of your thoughts on that topic and on how your research codes will benefit from exascale?

Gräter: As was brought up, the cases where you have a scientific question that really needs exascale are rare so for my field actually there is now the attempt to simulate whole cells and at the moment we still do single protein. [There’s an opportunity] to make it more complex and big when we have exascale: let’s simulate the cell, but at the same time, the time-scales of interest go from nano-seconds and micro-seconds to needing to simulate for seconds, and so solving one problem can become much more complex. You all of the sudden need to be more accurate to extrapolate to even longer time scales, so this will be very hard to come up with well-posed scientific problems that you can validate and so forth that make use of an exascale computer. I think we will fill these exascale computers up and we will learn through that, but it will be a learning curve by actually doing these calculations there.

HPCwire: So if you have a petaflops machine, what percentage of that machine do you need at this point?

Gräter: We often actually can easily use even a small fraction, 20 percent; if we have a long time slot, many CPU hours, a fraction at a time is totally fine – so we need millions and millions of CPU hours easily but the scaling must not be such that we fill up the whole computer – so this embarrassingly-parallel way is a way we can easily do happily for our scientific question, but that’s not exactly what an exascale machine is for. So here I see a vulnerable point.

I think there is a chance from my field there will come applications, but it needs very careful thinking about which ones.

HPCwire: Coming off that question, what are the other gaps or pain points you see in HPC? What developments or technologies would most further your research? 

Gräter: I think machine learning will move into my field and this whole question of data storage is an important one on the technical side. Not the I/O during the simulations, but the data handling in post-processing because that’s also what you first of all don’t apply compute time for, so you’re left with your data and the analysis is not yet developed such that you would do this in parallel and then it’s distributed and you want to visualize it – so a cloud type of high performance computer with a very high speed interconnect is something we will also need at that point.

HPCwire: In the closing panel, you spoke of AI as an exciting development that is also important for attracting young people into the field. How will you bring AI into your workflow?

Gräter: I see the first people just doing it – you ask colleagues and they are doing AI. In our case, there is opportunity for improvement of parameters by AI, also the analysis of data and substituting simulation by AI, so I see various aspects; it will never make our physics based models disappear but it’s a complementary way for us to advance.


*STEM/MINT: STEM is a popular but not universal acronym referencing the fields of science, technology, engineering and math. The equivalent concept in Germany is “MINT,” which stands for math, information technology, natural science and technology.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This