IBM Clears Path to 5nm with Silicon Nanosheets

By Tiffany Trader

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a process to build 5 nanometer (nm) chips by combining a novel switch architecture with advanced lithography techniques.

The heart of the R&D advance is a new gate-all-around architecture that employs stacked silicon nanosheets, replacing the FinFET structure used in today’s leading processors. Instead of having one single vertical fin, the horizontal “stack” can send signals through four gates, providing for better leakage control at smaller scales.

IBM Research scientist Nicolas Loubet holds a wafer of chips with 5nm silicon nanosheet transistors (Photo Credit: Connie Zhou)

“We understood that the FinFET structure is running out of steam at 7nm and we had to invent a new device structure which could continue the scaling for several more generations,” said Mukesh V Khare, vice president at IBM Research, in an interview with HPCwire.

According to IBM, the gate-all-around architecture paves the way for fingernail-sized chips (~600mm2, says Khare) packed with 30 billion transistors—50 percent more transistors than IBM’s 7nm process enables. IBM estimates that this would provide close to a 40 percent improvement in performance for the same power or 75 percent power savings at matched performance compared with today’s leading-edge 10nm technology.

The same Extreme Ultraviolet (EUV) lithography approach that IBM used to produce the 7nm test node was applied to the nanosheet transistor architecture. With EUV, the width of the nanosheets can be adjusted continuously, within a single manufacturing process. “This adjustability permits the fine-tuning of performance and power for specific circuits – something not possible with today’s FinFET transistor architecture production,” says IBM.

IBM and its research partners have built the transistors on 300mm wafers. “We put the entire process together, measure, validate and then our partners get full access to the technology to take it from proof point with us at IBM to manufacturing,” said Khare.

Khare emphasized, “These are not one chip or one device types of proof point; these are put together on a manufacturing scale fab which is used for research by IBM Research alliance, so this is a realistic toolset, the toolset that will eventually mature into the manufacturing toolset.”

Market analyst Jim McGregor of Tirias Research did not hesitate to call this a credible advance. “There are basically three pillars of innovation in semiconductor manufacturing,” he said. “One is the lithography process, which we’ve been completely constrained on but we’re slowly moving to EUV. The second is materials technology, which we’ve been advancing rapidly over the past decade through string silicon and other chemical makeups and the third area is transistor design. That has remained stagnant for many years, a couple decades, until we went to FinFET over the past couple years, however FinFETs are going to have their limitations architecturally and this [advance] is addressing that limitation and allows us to continue scaling, and continue basically Moore’s law. It also is injecting new materials that are going to be critical going forward, such as the the nanosheets and nanowires.”

As promising as the technical merits may be here, however, we cannot forget the economic considerations of Moore’s law, said McGregor, which will likely leave semiconductor makers like GlobalFoundries looking to leverage the FinFET technology for as long as possible to recoup the major investments that it and its partners have made. “I would estimate that at 5nm you will still see traditional FinFET,” said McGregor, “You may see IBM’s nanosheet architecture creep in later on, maybe as a sub-node to 5nm or a following process.”

IBM Research has already completed its work on the 7nm process that it introduced two years ago and transferred the technology to its manufacturing partners. IBM has said that its 7nm node will be reaching “manufacturing maturity” towards end of this year, or early next year. “The technology is very, very close,” said Khare, “and the cycle continues with another breakthrough. We will continue to work with our manufacturing partners to make this technology fully available, eventually they will decide the right timing based both on business leads as well as market drivers.”

Like the 7nm test chip before it, the latest semiconductor proof point is part of IBM’s $3 billion, five-year investment in chip R&D that was announced in 2014. As a fundamental building block for semiconductor technology, node advances will benefit all those market segments that can benefit from silicon technology scale, including high-performance computing, enterprise, and mobile. IBM, not surprisingly, is particularly focused on enhancing its cognitive computing and cloud platforms.

“Although a lot of people think of Intel when they think of semiconductor advancements, you have to remember that IBM and their development consortium accounts for a vast amount of innovation in semiconductor processing over the past 15 years or so especially,” said McGregor. “I’d say almost half of the major innovations have probably come from that alliance. It also helps push that new technology into manufacturing because these companies work so close together.”

Feature image caption: A scan of IBM Research Alliance’s 5nm transistor, built using an industry-first process to stack silicon nanosheets as the device structure (Photo credit: IBM)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Can Markov Logic Take Machine Learning to the Next Level?

July 11, 2018

Advances in machine learning, including deep learning, have propelled artificial intelligence (AI) into the public conscience and forced executives to create new business plans based on data. However, the scarcity of hig Read more…

By Alex Woodie

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

ORNL Summit Supercomputer Is Officially Here

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer today at an event presided over by DOE Secretary Rick Perry. Read more…

CSIR, Nvidia Partner to Launch GPU-Powered AI Center in India

July 10, 2018

As reported by a number of Indian news outlets, India’s Council of Scientific and Industrial Research (CSIR) is partnering with Nvidia to establish a new, AI-focused Centre of Excellence in New Delhi, India's capital. Read more…

By Oliver Peckham

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Meet the ISC18 Cluster Teams: Up Close & Personal

July 6, 2018

It’s time to meet your ISC18 Student Cluster Competition teams. While I was able to film them live at the ISC show, the trick was finding time to edit the vid Read more…

By Dan Olds

PRACEdays18 Keynote Allan Williams (Australia/NCI): We’re Open for Business Down Under!

July 5, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened with a plenary session on May 29, 2018 Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

HPC Under the Covers: Linpack, Exascale & the Top500

June 28, 2018

HPCers can get painted as a monolithic bunch by outsiders, but internecine disagreements abound over the HPCest of HPC jargon, as was evident at ISC this week. Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This