GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

By Tiffany Trader

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The global semiconductor company, headquartered in Santa Clara, Calif., says the process node offers a 40 percent performance improvement over its 14nm node, a 60 percent power reduction, and at least a 30 percent die cost reduction.

The platform integrates 17 million gates per square millimeter, over a 50 percent scaling off of 14nm. GlobalFoundries Chief Technology Officer Gary Patton noted, “Because of the need for multi patterning on these nodes, the complexity is increasing more than it has done historically. We scale a little bit more than 50 percent so when we add the higher complexity we still end up at the right point for our customers, which is at least a 30 percent die cost improvement and for some products maybe as much as 45 percent cost improvement.”

High performance computing, graphics, and networking are key areas for initial products, as are custom silicon plays. “We’re seeing a lot of push from some new players in the fabless space in the area of artificial intelligence and machine learning and they are very focused on leveraging the ASIC platform for those products.” Like Google TPUs perhaps.

GlobalFoundries has the technology to make chips up to 780 mm². Its smallest 14nm chips are around 50 mm² and some go as high as 700 mm² and it expects the same range to apply to 7nm as well.

The process design kit (PDK) is now available for GlobalFoundries 7LP FinFET and FX-7 ASIC. (Source: GlobalFoundries slide deck)

The lack of a 10nm node on GlobalFoundries’ roadmap was strategic, a response to customer input. “I don’t personally view it as skipping a node,” said Patton, “because if you look at the density of that 10nm and performance that it offers it’s more like a half node. Our customers wanted a stronger value proposition. We made a decision two years ago to just focus on 7nm and that’s allowed us to get this offering out at this time.”

Patton views 20nm and 10nm as “weak nodes;” in contrast he sees 14nm and 7nm as having long-term staying power. GlobalFoundries has invested $12 billion in the Malta “Fab 8” factory, and is still expanding going into 2018 to support its 14nm manufacturing ramp. Having a high-yield manufacturing base on 14nm makes the development on 7nm much easier, said Patton. They’ve had over 50 designs in 14nm, and have had 100 percent first-time success on every product tape out on 14nm at the factory, according to Patton.

The 7nm process technology heads for prime time just two years after it was introduced by the IBM Research alliance which includes GlobalFoundries and Samsung. The original proof of concept chip was manufactured with extreme ultraviolet lithography (EUV), but initial products will go forward using optical lithography. This probably won’t be a surprise to those familiar with EUV’s uphill climb toward commercial viability.

EUV is progressing, said Patton, but it’s not ready for high-volume commercial production. Not wanting to hold back its customers, GlobalFoundries is launching 7nm with conventional immersion lithography and has designed the technology to be drop-in compliant with EUV. Patton expects EUV versions will be ready a year after the initial product launches – pushing that EUV goalpost into 2019.

Patton, who was with IBM for 30 years and led IBM’s semiconductor research & development organization for the last eight before the chip manufacturing business was sold to GlobalFoundries in July 2015, reviews some of the benefits EUV offers through simplification of the process. “It allows us to take some masks out, which will improve the cycle time. We can take some processing steps out which will help — the more you process wafers, the more defects you introduce, so that will give a yield advantage. We see much better line edge control with EUV and that will give some improvement in the sharpness of the features, which will give parametric advantage,” he said.

Globalfoundries Fab 8 campus in Malta, New York, has two EUV scanners arriving in 2017 and two more are scheduled for delivery in 2018. Patton says that he is encouraged by the progress that has been made on EUV, but relays four key challenge areas relating to the light source, the toolset, the resist and the mask.

Aerial view of Fab 8 in Malta, N.Y. (Source: GlobalFoundries)

“A lot of good work is being done at ASML, as well as places like IMEC, on improving mask defects, developing pellicles that would mitigate some of the defect issues, but the key challenge is being able to do that in a way that’s reliable and can withstand the high-power that’s coming out of the EUV light source – so that’s probably the long pole of the tent so to speak in getting EUV ready, but there’s good progress. We’re expecting EUV will be ready for high volume manufacturing in the 2019 timeframe and we’ll be in a position to support.”

The big takeaway is that 7nm is here and it’s on time, said Jim McGregor, founder of Tirias Research, in an interview with HPCwire. “You have to remember that on the last major process node, the 14nm, GlobalFoundries was late. It had to partner with Samsung to get moving. Since then they’ve acquired the semiconductor group from IBM and these are a lot of the same experts that developed the latest technology for the past 20 years and have really led the consortium around IBM to develop to process technologies. Now we’re seeing GlobalFoundries that was kind of trailing company in terms of rolling out new process technology moving to the forefront of being one of the leaders in rolling out new process technology.”

Synergy between IBM and GlobalFoundries was likewise emphasized by Patton. “A key part of the IBM acquisition was we take over the manufacturing of the parts, which is I think is a more efficient situation for IBM because the IBM server volumes are small,” he told us. “So we take on the manufacturing investment; we do some special things for them to make sure the technology meets their server requirements. In exchange they committed for ten years to do what they do very well, which is the fundamental research on how to keep the technology moving forward. So they continue to do the research in the IBM Watson Research Center and that pipeline of innovation flows into the Albany NanoTech center, where we do the pathfinding and determine what elements are ready for development to keep extending technology either through scaling or other creative ways.”

Moore’s law may be slowing, but it isn’t dead yet in Patton’s view. GlobalFoundries is actively investigating next-generation semiconductor technologies, such as nanowires and vertical transistors, with alliance partners IBM and Samsung at the State University of New York (SUNY) Albany NanoTech Complex, located about 30 miles south of the Fab 8 facility. You can see the fruits of their nanowire efforts in the 5nm test chip that was unveiled last week.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This