GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

By Tiffany Trader

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The global semiconductor company, headquartered in Santa Clara, Calif., says the process node offers a 40 percent performance improvement over its 14nm node, a 60 percent power reduction, and at least a 30 percent die cost reduction.

The platform integrates 17 million gates per square millimeter, over a 50 percent scaling off of 14nm. GlobalFoundries Chief Technology Officer Gary Patton noted, “Because of the need for multi patterning on these nodes, the complexity is increasing more than it has done historically. We scale a little bit more than 50 percent so when we add the higher complexity we still end up at the right point for our customers, which is at least a 30 percent die cost improvement and for some products maybe as much as 45 percent cost improvement.”

High performance computing, graphics, and networking are key areas for initial products, as are custom silicon plays. “We’re seeing a lot of push from some new players in the fabless space in the area of artificial intelligence and machine learning and they are very focused on leveraging the ASIC platform for those products.” Like Google TPUs perhaps.

GlobalFoundries has the technology to make chips up to 780 mm². Its smallest 14nm chips are around 50 mm² and some go as high as 700 mm² and it expects the same range to apply to 7nm as well.

The process design kit (PDK) is now available for GlobalFoundries 7LP FinFET and FX-7 ASIC. (Source: GlobalFoundries slide deck)

The lack of a 10nm node on GlobalFoundries’ roadmap was strategic, a response to customer input. “I don’t personally view it as skipping a node,” said Patton, “because if you look at the density of that 10nm and performance that it offers it’s more like a half node. Our customers wanted a stronger value proposition. We made a decision two years ago to just focus on 7nm and that’s allowed us to get this offering out at this time.”

Patton views 20nm and 10nm as “weak nodes;” in contrast he sees 14nm and 7nm as having long-term staying power. GlobalFoundries has invested $12 billion in the Malta “Fab 8” factory, and is still expanding going into 2018 to support its 14nm manufacturing ramp. Having a high-yield manufacturing base on 14nm makes the development on 7nm much easier, said Patton. They’ve had over 50 designs in 14nm, and have had 100 percent first-time success on every product tape out on 14nm at the factory, according to Patton.

The 7nm process technology heads for prime time just two years after it was introduced by the IBM Research alliance which includes GlobalFoundries and Samsung. The original proof of concept chip was manufactured with extreme ultraviolet lithography (EUV), but initial products will go forward using optical lithography. This probably won’t be a surprise to those familiar with EUV’s uphill climb toward commercial viability.

EUV is progressing, said Patton, but it’s not ready for high-volume commercial production. Not wanting to hold back its customers, GlobalFoundries is launching 7nm with conventional immersion lithography and has designed the technology to be drop-in compliant with EUV. Patton expects EUV versions will be ready a year after the initial product launches – pushing that EUV goalpost into 2019.

Patton, who was with IBM for 30 years and led IBM’s semiconductor research & development organization for the last eight before the chip manufacturing business was sold to GlobalFoundries in July 2015, reviews some of the benefits EUV offers through simplification of the process. “It allows us to take some masks out, which will improve the cycle time. We can take some processing steps out which will help — the more you process wafers, the more defects you introduce, so that will give a yield advantage. We see much better line edge control with EUV and that will give some improvement in the sharpness of the features, which will give parametric advantage,” he said.

Globalfoundries Fab 8 campus in Malta, New York, has two EUV scanners arriving in 2017 and two more are scheduled for delivery in 2018. Patton says that he is encouraged by the progress that has been made on EUV, but relays four key challenge areas relating to the light source, the toolset, the resist and the mask.

Aerial view of Fab 8 in Malta, N.Y. (Source: GlobalFoundries)

“A lot of good work is being done at ASML, as well as places like IMEC, on improving mask defects, developing pellicles that would mitigate some of the defect issues, but the key challenge is being able to do that in a way that’s reliable and can withstand the high-power that’s coming out of the EUV light source – so that’s probably the long pole of the tent so to speak in getting EUV ready, but there’s good progress. We’re expecting EUV will be ready for high volume manufacturing in the 2019 timeframe and we’ll be in a position to support.”

The big takeaway is that 7nm is here and it’s on time, said Jim McGregor, founder of Tirias Research, in an interview with HPCwire. “You have to remember that on the last major process node, the 14nm, GlobalFoundries was late. It had to partner with Samsung to get moving. Since then they’ve acquired the semiconductor group from IBM and these are a lot of the same experts that developed the latest technology for the past 20 years and have really led the consortium around IBM to develop to process technologies. Now we’re seeing GlobalFoundries that was kind of trailing company in terms of rolling out new process technology moving to the forefront of being one of the leaders in rolling out new process technology.”

Synergy between IBM and GlobalFoundries was likewise emphasized by Patton. “A key part of the IBM acquisition was we take over the manufacturing of the parts, which is I think is a more efficient situation for IBM because the IBM server volumes are small,” he told us. “So we take on the manufacturing investment; we do some special things for them to make sure the technology meets their server requirements. In exchange they committed for ten years to do what they do very well, which is the fundamental research on how to keep the technology moving forward. So they continue to do the research in the IBM Watson Research Center and that pipeline of innovation flows into the Albany NanoTech center, where we do the pathfinding and determine what elements are ready for development to keep extending technology either through scaling or other creative ways.”

Moore’s law may be slowing, but it isn’t dead yet in Patton’s view. GlobalFoundries is actively investigating next-generation semiconductor technologies, such as nanowires and vertical transistors, with alliance partners IBM and Samsung at the State University of New York (SUNY) Albany NanoTech Complex, located about 30 miles south of the Fab 8 facility. You can see the fruits of their nanowire efforts in the 5nm test chip that was unveiled last week.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with ORNL’s Bronson Messer, an HPCwire Person to Watch in 2022

August 12, 2022

HPCwire presents our interview with Bronson Messer, distinguished scientist and director of Science at the Oak Ridge Leadership Computing Facility (OLCF), ORNL, and an HPCwire 2022 Person to Watch. Messer recaps ORNL's journey to exascale and sheds light on how all the pieces line up to support the all-important science. Also covered are the role... Read more…

TACC Simulations Probe the First Days of Stars, Black Holes

August 12, 2022

The stunning images produced by the James Webb Space Telescope and recent supercomputer-enabled black hole imaging efforts have brought the early days of the universe quite literally into sharp focus. Researchers from th Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora system slated for delivery in the coming months. The HPE-built Polaris system (pictured in the header) consists of 560 nodes... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over the course of the legislative process broadened to include hundreds of billions in additional science and technology spending. He was flanked by Speaker... Read more…

AWS Solution Channel

Shutterstock 1519171757

Running large-scale CFD fire simulations on AWS for Amazon.com

This post was contributed by Matt Broadfoot, Senior Fire Strategy Manager at Amazon Design and Construction, and Antonio Cennamo ProServe Customer Practice Manager, Colin Bridger Principal HPC GTM Specialist, Grigorios Pikoulas ProServe Strategic Program Leader, Neil Ashton Principal, Computational Engineering Product Strategy, Roberto Medar, ProServe HPC Consultant, Taiwo Abioye ProServe Security Consultant, Talib Mahouari ProServe Engagement Manager at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1689646429

Gain a Competitive Edge using Cloud-Based, GPU-Accelerated AI KYC Recommender Systems

Financial services organizations face increased competition for customers from technologies such as FinTechs, mobile banking applications, and online payment systems. To meet this challenge, it is important for organizations to have a deep understanding of their customers. Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains – including and in particular the semiconductor supply chain. In the U.S. – which, like much of the world, relies on Asia for its semiconductors – those efforts have taken shape through the recently... Read more…

Q&A with ORNL’s Bronson Messer, an HPCwire Person to Watch in 2022

August 12, 2022

HPCwire presents our interview with Bronson Messer, distinguished scientist and director of Science at the Oak Ridge Leadership Computing Facility (OLCF), ORNL, and an HPCwire 2022 Person to Watch. Messer recaps ORNL's journey to exascale and sheds light on how all the pieces line up to support the all-important science. Also covered are the role... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora system slated for delivery in the coming months. The HPE-built Polaris system (pictured in the header) consists of 560 nodes... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over the course of the legislative process broadened to include hundreds of billions in additional science and technology spending. He was flanked by Speaker... Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains – including and in particular the semiconductor supply chain. In the U.S. – which, like much of the world, relies on Asia for its semiconductors – those efforts have taken shape through the recently... Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear weapons. Amid major efforts to modernize that stockpile, LLNL has announced that researchers from its own Energetic Materials Center... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking – which serves as the EU’s concerted supercomputing play – announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire