OpenSuCo: Advancing Open Source Supercomputing at ISC

By Tiffany Trader

June 15, 2017

As open source hardware gains traction, the potential for a completely open source supercomputing system becomes a compelling proposition, one that is being investigated by the International Workshop on Open Source Supercomputing (OpenSuCo). Ahead of OpenSuCo’s inaugural workshop taking place at ISC 2017 in Frankfurt, Germany, next week, HPCwire reached out to program committee members Anastasiia Butko and David Donofrio of Lawrence Berkeley National Laboratory to learn more about the effort’s activities and vision.

HPCwire: Please introduce “OpenSuCo” — what are your goals and objectives?

OpenSuCo: As we approach the end of MOSFET scaling, the HPC community needs a way to continue performance scaling. One way of providing that scaling is by providing more specialized architectures tailored for specific applications. In order to make possible the specification and verification of these new architectures, more rapid prototyping methods need to be explored. At the same time, these new architectures need software stacks and programming models to be able to actually use these new designs.

There has been a consistent march toward open source for each of these components. At the node hardware level, Facebook has launched the Open Compute Project; Intel has launched OpenHPC, which provides software tools to manage HPC systems. However, each of these efforts use closed source components in their final version. We present OpenSuCo: a workshop for exploring and collaborating on building an HPC system using open-source hardware and system software IP (intellectual property).

The goal of this workshop is to engage the HPC community and explore open-source solutions for constructing an HPC system – from silicon to applications.

Figure illustrates the progress in open source software and hardware


HPCwire: We’ve seen significant momentum for open source silicon in the last few years, with RISC-V and Open Compute Project for example, what is the supercomputing perspective on this?

OpenSuCo: Hardware specialization, specifically the creation of Systems-On-Chip (SoCs), offers a method to create cost-effective HPC architectures from off-the-shelf components. However, effectively tapping the advantages provided by SoC specialization requires the use of expensive and often closed source tools. Furthermore, the building blocks used to create the SoC may be closed source, limiting customization. This often leaves SoC design methodologies outside the reach of many academics and DOE researchers. The case for specialized accelerators can also be made from an economic sense as, in contrast to historical trends, the energy consumed per transistor has been holding steady, while the cost (in dollars) per transistor has been steadily decreasing, implying that we will soon be able to pack more transistors into a given area than can be simultaneously operated.

From an economic standpoint, we are witnessing an explosion of highly cost-sensitive and application-specific IoT (internet of things) devices. The developers of these devices face a stark choice: spend millions on a commercial license for processors and other IP or face the significant risk and cost (in both development time and dollars) of developing custom hardware. Similar parallels can be drawn to the low-volume and rapid design needs found in many scientific and government applications. By developing a low cost and robust path to the generation of specialized hardware, we can support the development and deployment of application-tailored processors across many DOE mission areas.

The design methodologies traditionally focused for use in these cost sensitive design flows can be applied to high-end computing due to the emergence of embedded IP offering HPC-centric capabilities, such as double-precision floating point, 64-bit address capability, and options for high performance I/O and memory interfaces. The SoC approach, coupled with highly accessible open source flows, will allow chip designers to include only features they want, excluding those not utilized by mainstream HPC systems. By pushing customization into the chip, we can create customization that is not feasible with today’s commodity board-level computing system design.

HPCwire: Despite pervasive support in tech circles not everyone is convinced of the merits of open source, what is the case for open source in high performance computing?

OpenSuCo: While many commercial tools provide technology to customize a processor or system given a static baseline, they generally provide only proprietary solutions that both restrict the level of customization that can be applied, as well as increase the cost of production. This cost is of greatest importance to low-volume or highly specialized markets, such as those found in the scientific, research, and defense applications, as large volume customers can absorb this NRE as part of their overall production. As an alternative to closed source hardware flows, open source hardware has been growing in popularity in recent years and mirrors the rise of Linux and open source software in the 1990s and early 2000s. We put forth that Open Source Hardware will drive the next wave of innovation for hardware IP.

In contrast to closed-source hardware IP and flows, a completely open framework and flow enable extreme customization and drive cost for initial development to virtually zero. Going further, by leveraging community-supported and maintained technology, it is possible to also incorporate all of the supporting software infrastructure, compilers, debuggers, etc. that work with open source processor designs. A community-led effort also creates a support community that replaces what is typically found with commercial products and leads to more robust implementations as a greater number of users are testing and working with designs. Finally, for security purposes, any closed-source design carries an inherent risk in the inability to truly inspect all aspects of its operation. Open source hardware allows the user to inspect all aspects of its design for a thorough review of its security.

HPCwire: Even with the advances in open source hardware, a completely open source supercomputing system seems ambitious at this point. Can you speak to the reality of this goal in the context of the challenges and community support?

OpenSuCo: We agree that building a complete open-source HPC system is a daunting task, however, a system composed of an increased number of open source components is an excellent way to increase technological diversity and spur greater innovation.

The rapid growth and adoption of the RISC-V ISA is an excellent example of how a community can produce a complete and robust software toolchain in a relatively short time. While largely used in IoT devices at the moment, there are multiple efforts to extend the reach of RISC-V – in both implementations and functionality, into the HPC space.

HPCwire: What is needed on the software side to make this vision come together?

OpenSuCo: The needs and challenges of an open source-based supercomputer are not any greater than that of a traditional “closed” system. Most future systems will need to face the continuing demands of increased parallelism, shifting Flop-to-Byte ratios and an increase in the quantity and variety of accelerators. An open system may possess greater transparency and a larger user community allowing more effective and distributed development. Regardless, continued collaboration between software and hardware developers will be necessary to create the required community to support this effort. As part of the OpenSuCo workshop we hope to engage and bring together a diverse community of software and hardware architects willing to engage on the possibility of realizing this vision.

HPCwire: You’re holding a half-day workshop at ISC 2017 in Frankfurt on June 22. What is on the agenda and who should attend?

OpenSuCo: The ISC 2017 workshop agenda consists of three technical tracks:

Hardware Track

Sven Karlsson and Pascal Schleuniger (Danmarks Tekniske Universitet)

Kurt Keville (Massachusetts Institute of Technology)\Anne Elster (Norwegian University of Science and Technology)

Software Track

Hiroaki Kataoka and Ryos Suzuki

Anastasiia Butko (Berkeley Lab)

Xavier Teurel (Barcellona Supercomputing Center)

Collaboration Track

Bill Nitzberg (Altair Engineering, Inc.)

Jens Breitbart (Robert Bosch GmbH)

Antonio Peña (Barcelona Supercomputing Center)

Keynote Speaker: Alex Bradbury (University of Cambridge)

The complete agenda of the event can be found online at http://www.opensuco.community/2017/05/24/isc17-agenda/.

While many of the emerging technologies and opportunities surround the rise of open-source hardware, we would like to invite all members of the HPC community to participate in a true co-design effort in building a complete HPC system.

HPCwire: You’ll also be holding a workshop at SC17. You’ve put out a call for papers. How else can people get involved in OpenSuCo activities?

OpenSuCo: While we have long advocated for innovative and open source systems for the HPC community, we are just beginning to tackle this comprehensive solution and cannot do it alone. We welcome collaborators to help build the next generation of HPC software and hardware design flows.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GDPR’s Impact on Scientific Research Uncertain

May 24, 2018

Amid the angst over preparations—or lack thereof—for new European Union data protections entering into force at week’s end is the equally worrisome issue of the rules’ impact on scientific research. Among the Read more…

By George Leopold

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This