ISC: Extreme-Scale Requirements to Push the Frontiers of Deep Learning

By Doug Black

June 17, 2017

Deep learning is the latest and most compelling technology strategy to take aim at the decades-old “drowning in data/starving for insight” problem. But contrary to the commonly held notion, deep learning is more than a big data problem per se. Delivering on deep learning’s potential – and achieving its anticipated 50 percent annual growth rate market opportunity – involves a highly demanding scaling problem that requires overlapping computational and communications capabilities as complex as any of the classic supercomputing challenges of the past.

That’s the view of Cray senior VP and CTO Steve Scott, who will discuss “pushing the frontiers of deep learning” at ISC in Frankfurt to close out Deep Learning Day (Wednesday, June 21) at the conference.

Scott told EnterpriseTech (HPCwire‘s sister publication) the focus of his session will be on training at-scale neural networks to handle complex deep learning applications: self-driving cars, facial recognition, robots sorting mail, supply-chain optimization and aiding in the search for oil and gas, to name a few.

“The main point I’ll be making is that we see a general convergence of data analytics and classic simulation and modeling HPC problems,” he said. “Deep learning folds into that, and the training problem in particular is a classic HPC problem.”

In short, greater machine intelligence requires larger, more complex models – with billions of model weights and hundreds of layers.

Ideally, Scott said, training neural networks using the stochastic gradient descent algorithm “you’d process one sample of that training data, then update the weights of your model, and then repeat that process with the next piece of training data and then update the weights of your model again.”

Cray’s Steve Scott

The problem, he said, is that it’s an inherently serial model. So even when using a single node, Scott said, users have traditionally broken up their training data into sets – called “mini-batches” – to speed up the process. The entire training process becomes much more difficult when you want to train your network not on one GPU, or 10 GPUs, but on a hundred or thousands of GPUs.

You can simplify training by using lesser amounts of data, but that leads to deep learning systems that haven’t been trained thoroughly enough and, therefore, aren’t intelligent enough. “If you have a small amount of data and you try to use it to train a very large neural network,” Scott said, “you end up with a phenomenon called ‘overfitting,’ where the model works very well for the training data you gave it, but it can’t generalize to new data and new situations.”

So scale is essential, and scale is a big challenge.

“Scaling up this training problem to large numbers of compute nodes brings up this classic problem of convergence of your model vs. the parallel speed you can get,” Scott said. “This is a really tough problem. If you have more compute nodes working in parallel you can process more samples per second. But now you’re doing more work each time, your processing more samples before you can update the model weights. So the problems of converging to the correct model becomes much more difficult.”

Scott will discuss the kind of system architecture required to take on deep learning training at scale, an architecture that – surprise! – Cray has been working on for years.

“It calls for a very strong interconnect [the fabric, or network, connecting the processors within the system], and it also has a lot to do with turning this into an MPI [the communications software used by the programs to communicate via the fabric] problem,” Scott said. “It calls for strong synchronization, it calls for overlapping your communications and your computation.

“We think bringing supercomputing technologies, from both a hardware and a software perspective, to bear can help speed up this deep learning problem that many people don’t think of. They think of it as a big data problem, not as a classic supercomputing problem. We think the core problem here in scaling these larger models is one in which supercomputing technology is uniquely qualified to address.”

Scott said deep learning has taken root to different degrees in different parts of the market. Hyperscalers (Google, Facebook, Microsoft, AWS, etc.) have thousands of projects under development with many, in voice and image recognition in particular, fully operational.

“It’s really past the tipping point,” Scott said. “The big hyperscalers have demonstrated that this stuff works and now they’re applying it all over the place.”

But the enterprise market, lacking the data and the compute resources of hyperscalers, remains for now in the experimentation and “thinking about it” phase, he said. “The enterprise space is quite a bit further behind. But they see the potential to apply it.” Organizations that are early adopters of IoT, with its attendant volumes of machine data, are and will be the early adopters of deep learning at scale.

“We’re seeing it applied to lots of different problems,” said Scott. “Many people, including me, are optimistic that every area of industry and science and beyond is going to have problems that are amenable to deep learning. We think it’s going to be very widespread, and it’s very large organizations with large amounts of data where it will take root first.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This