ISC: Extreme-Scale Requirements to Push the Frontiers of Deep Learning

By Doug Black

June 17, 2017

Deep learning is the latest and most compelling technology strategy to take aim at the decades-old “drowning in data/starving for insight” problem. But contrary to the commonly held notion, deep learning is more than a big data problem per se. Delivering on deep learning’s potential – and achieving its anticipated 50 percent annual growth rate market opportunity – involves a highly demanding scaling problem that requires overlapping computational and communications capabilities as complex as any of the classic supercomputing challenges of the past.

That’s the view of Cray senior VP and CTO Steve Scott, who will discuss “pushing the frontiers of deep learning” at ISC in Frankfurt to close out Deep Learning Day (Wednesday, June 21) at the conference.

Scott told EnterpriseTech (HPCwire‘s sister publication) the focus of his session will be on training at-scale neural networks to handle complex deep learning applications: self-driving cars, facial recognition, robots sorting mail, supply-chain optimization and aiding in the search for oil and gas, to name a few.

“The main point I’ll be making is that we see a general convergence of data analytics and classic simulation and modeling HPC problems,” he said. “Deep learning folds into that, and the training problem in particular is a classic HPC problem.”

In short, greater machine intelligence requires larger, more complex models – with billions of model weights and hundreds of layers.

Ideally, Scott said, training neural networks using the stochastic gradient descent algorithm “you’d process one sample of that training data, then update the weights of your model, and then repeat that process with the next piece of training data and then update the weights of your model again.”

Cray’s Steve Scott

The problem, he said, is that it’s an inherently serial model. So even when using a single node, Scott said, users have traditionally broken up their training data into sets – called “mini-batches” – to speed up the process. The entire training process becomes much more difficult when you want to train your network not on one GPU, or 10 GPUs, but on a hundred or thousands of GPUs.

You can simplify training by using lesser amounts of data, but that leads to deep learning systems that haven’t been trained thoroughly enough and, therefore, aren’t intelligent enough. “If you have a small amount of data and you try to use it to train a very large neural network,” Scott said, “you end up with a phenomenon called ‘overfitting,’ where the model works very well for the training data you gave it, but it can’t generalize to new data and new situations.”

So scale is essential, and scale is a big challenge.

“Scaling up this training problem to large numbers of compute nodes brings up this classic problem of convergence of your model vs. the parallel speed you can get,” Scott said. “This is a really tough problem. If you have more compute nodes working in parallel you can process more samples per second. But now you’re doing more work each time, your processing more samples before you can update the model weights. So the problems of converging to the correct model becomes much more difficult.”

Scott will discuss the kind of system architecture required to take on deep learning training at scale, an architecture that – surprise! – Cray has been working on for years.

“It calls for a very strong interconnect [the fabric, or network, connecting the processors within the system], and it also has a lot to do with turning this into an MPI [the communications software used by the programs to communicate via the fabric] problem,” Scott said. “It calls for strong synchronization, it calls for overlapping your communications and your computation.

“We think bringing supercomputing technologies, from both a hardware and a software perspective, to bear can help speed up this deep learning problem that many people don’t think of. They think of it as a big data problem, not as a classic supercomputing problem. We think the core problem here in scaling these larger models is one in which supercomputing technology is uniquely qualified to address.”

Scott said deep learning has taken root to different degrees in different parts of the market. Hyperscalers (Google, Facebook, Microsoft, AWS, etc.) have thousands of projects under development with many, in voice and image recognition in particular, fully operational.

“It’s really past the tipping point,” Scott said. “The big hyperscalers have demonstrated that this stuff works and now they’re applying it all over the place.”

But the enterprise market, lacking the data and the compute resources of hyperscalers, remains for now in the experimentation and “thinking about it” phase, he said. “The enterprise space is quite a bit further behind. But they see the potential to apply it.” Organizations that are early adopters of IoT, with its attendant volumes of machine data, are and will be the early adopters of deep learning at scale.

“We’re seeing it applied to lots of different problems,” said Scott. “Many people, including me, are optimistic that every area of industry and science and beyond is going to have problems that are amenable to deep learning. We think it’s going to be very widespread, and it’s very large organizations with large amounts of data where it will take root first.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This