ISC: Extreme-Scale Requirements to Push the Frontiers of Deep Learning

By Doug Black

June 17, 2017

Deep learning is the latest and most compelling technology strategy to take aim at the decades-old “drowning in data/starving for insight” problem. But contrary to the commonly held notion, deep learning is more than a big data problem per se. Delivering on deep learning’s potential – and achieving its anticipated 50 percent annual growth rate market opportunity – involves a highly demanding scaling problem that requires overlapping computational and communications capabilities as complex as any of the classic supercomputing challenges of the past.

That’s the view of Cray senior VP and CTO Steve Scott, who will discuss “pushing the frontiers of deep learning” at ISC in Frankfurt to close out Deep Learning Day (Wednesday, June 21) at the conference.

Scott told EnterpriseTech (HPCwire‘s sister publication) the focus of his session will be on training at-scale neural networks to handle complex deep learning applications: self-driving cars, facial recognition, robots sorting mail, supply-chain optimization and aiding in the search for oil and gas, to name a few.

“The main point I’ll be making is that we see a general convergence of data analytics and classic simulation and modeling HPC problems,” he said. “Deep learning folds into that, and the training problem in particular is a classic HPC problem.”

In short, greater machine intelligence requires larger, more complex models – with billions of model weights and hundreds of layers.

Ideally, Scott said, training neural networks using the stochastic gradient descent algorithm “you’d process one sample of that training data, then update the weights of your model, and then repeat that process with the next piece of training data and then update the weights of your model again.”

Cray’s Steve Scott

The problem, he said, is that it’s an inherently serial model. So even when using a single node, Scott said, users have traditionally broken up their training data into sets – called “mini-batches” – to speed up the process. The entire training process becomes much more difficult when you want to train your network not on one GPU, or 10 GPUs, but on a hundred or thousands of GPUs.

You can simplify training by using lesser amounts of data, but that leads to deep learning systems that haven’t been trained thoroughly enough and, therefore, aren’t intelligent enough. “If you have a small amount of data and you try to use it to train a very large neural network,” Scott said, “you end up with a phenomenon called ‘overfitting,’ where the model works very well for the training data you gave it, but it can’t generalize to new data and new situations.”

So scale is essential, and scale is a big challenge.

“Scaling up this training problem to large numbers of compute nodes brings up this classic problem of convergence of your model vs. the parallel speed you can get,” Scott said. “This is a really tough problem. If you have more compute nodes working in parallel you can process more samples per second. But now you’re doing more work each time, your processing more samples before you can update the model weights. So the problems of converging to the correct model becomes much more difficult.”

Scott will discuss the kind of system architecture required to take on deep learning training at scale, an architecture that – surprise! – Cray has been working on for years.

“It calls for a very strong interconnect [the fabric, or network, connecting the processors within the system], and it also has a lot to do with turning this into an MPI [the communications software used by the programs to communicate via the fabric] problem,” Scott said. “It calls for strong synchronization, it calls for overlapping your communications and your computation.

“We think bringing supercomputing technologies, from both a hardware and a software perspective, to bear can help speed up this deep learning problem that many people don’t think of. They think of it as a big data problem, not as a classic supercomputing problem. We think the core problem here in scaling these larger models is one in which supercomputing technology is uniquely qualified to address.”

Scott said deep learning has taken root to different degrees in different parts of the market. Hyperscalers (Google, Facebook, Microsoft, AWS, etc.) have thousands of projects under development with many, in voice and image recognition in particular, fully operational.

“It’s really past the tipping point,” Scott said. “The big hyperscalers have demonstrated that this stuff works and now they’re applying it all over the place.”

But the enterprise market, lacking the data and the compute resources of hyperscalers, remains for now in the experimentation and “thinking about it” phase, he said. “The enterprise space is quite a bit further behind. But they see the potential to apply it.” Organizations that are early adopters of IoT, with its attendant volumes of machine data, are and will be the early adopters of deep learning at scale.

“We’re seeing it applied to lots of different problems,” said Scott. “Many people, including me, are optimistic that every area of industry and science and beyond is going to have problems that are amenable to deep learning. We think it’s going to be very widespread, and it’s very large organizations with large amounts of data where it will take root first.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s existing 20-quibit platform into a more robust, self-contain Read more…

By John Russell

Intel at CES: Nervana; 10nm Server CPU; Cascade Lake

January 9, 2019

On the eve of the Consumer Electronics Show in Las Vegas this week, Intel staged a launch event that covered a new version of its Nervana AI processor and a demonstration of the next-generation Xeon 10nm chip. The Read more…

By Staff

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Data: The Key To Unlocking Modern Research

Research tackles the big questions, delving into uncharted territory in pursuit of knowledge that could change the world. Today’s research simulations are generating more data than ever before, a trend that shows no signs of slowing. Read more…

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourself – and you are the easiest person to fool.” This maxim Read more…

By Ben Criger

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Batswana Gems

December 20, 2018

Most who work in the high-performance computing (HPC) industry agree; people problems are far more complicated than technical challenges. As I wrote in a 2015 HPCwire feature titled, “Women in HPC: Revelations and Reckoning,” diversity, or the lack thereof, is the HPC industry’s current grand challenge. Read more…

By Elizabeth Leake

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This