At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

By Doug Black

June 22, 2017

I’ve seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In this game, the brain doesn’t stand a chance.

Scoff at such talk as farfetched or far off in a hazy utopic/dystopic future. Roll your eyes and say we’ve heard the hype before (some of us remember a supercomputer company 25 years ago with the inflated name of “Thinking Machines,” long defunct). But it’s neither futuristic nor hype, it’s happening now, the technology pieces are taking shape, and the implications for business, for the work world and for our everyday lives – for good or ill – are as staggering as they are real.

Aside: It’s somewhat unsettling that conference attendees here in Frankfurt don’t seem particularly interested in those implications. For the moment, ISC is at the gathering point of computer scientists bringing about massive technological change, but nearly all the talk here is about the “how” of AI systems, not the “what then?” But there’s one anecdote making the rounds that has raised eyebrows: when Google engineers were asked to how its AlphaGo machine the winning move against the world champion of Go (the world’s most complex board game), the answer was: “We don’t know” (more on this below).

Quite consciously, engineers are architecting HPC systems along the lines of our brain. The new architecture is an emerging style of computing called “data intensive” or “data centric.” It replaces processing with memory (i.e., data) at the center of the computing universe. Combined with advanced algorithms, new memory and processor technologies are coming on line to make the new architecture a practical reality. Once the pieces are in place, the next step will be to scale these systems beyond all measure of human brain capacity.

What does data centric computing mean? How does it work? Why does it represent a major shift in advanced scale computing?

Let’s start answering those questions by first looking at how data centric systems are measured. The benchmark for new AI systems isn’t how fast they solve linear algebra problems (i.e., Linpack). That’s how processor-centric systems have been measured for decades, and considering the capabilities of data-centric systems under development, that benchmark seems wholly inadequate.

Rather than throughput, AI-based systems are measured in relation to people: their ability to compete with humans at our most intellectually challenging games of reason – checkers, chess, Go, poker. The standard of success isn’t training the system to become perfect at it, or to “solve” the game (i.e., work out every possible combination of moves). The benchmark is playing the game better than any human.

That’s the objective. Once the system is better than any of us, it’s ready to move into an advisory role, providing guidance and suggestions, augmenting our capabilities. For now. In a decade or so, these systems will take over tasks for us altogether.

Driving is a prime example. If driving were a game, humans would still beat machines – even though statistics show we’re getting worse at it (according to Dr. Pradeep Dubey, Intel Fellow, Intel Labs & Director, Parallel Computing Lab, who presented at ISC on autonomous vehicle technology). Around the world, two people are killed in car accidents each minute. In the U.S., 40,000 people are killed annually and 2 million suffer permanent injuries.

Meanwhile, AI is enabling machines to get better at driving. A convergence point is coming. For now, the car’s intelligence is limited to navigating, warning us about traffic conditions and setting off beepers when we get close to curbs and other cars.

The next step: our roads will have special lanes where we’ll temporarily hand over operation of the car to itself. A few years after that, we won’t drive at all. Driving is a game in which machines will soon be much better than we are.

Dr. Eng Lim Goh, Vice President of HPE and an industry visionary for decades, is a prime driver of new AI system development. At ISC this week, he discussed why AI in all its forms – machine learning, deep learning, strategic reasoning, etc. – is the driving force bringing about “data intensive” computing architectures.

Here’s his schema for the data intensive computer:

The left side of the diagram is old-style, LINPACK-benchmarked, processor-centric computing. That’s where HPC happens. The processor is at the center. Data is sent to the CPU, simulations are run, and new, and more, data comes out. These systems have hit a wall of their own making. The problem occurs when HPC systems run their simulations, generating exponentially more machine-generated data than they started with. They’re producing data beyond the capability of data scientists to analyze. Big data isn’t big enough.

“For 30 years we’ve lived in this world where small amounts of data go in, and we apply supercomputing power onto our partial differential equations, or our models, to generate lots of data,” he said.

Already, Goh pointed out, there aren’t enough data scientists to meet demand for today’s data analytics requirements. For the torrents of machine-generated data to come, there’s an overwhelming need to automate how data is analyzed.

Take for example seismic exploration.

For exploration of energy reserves at sea, ships drag cables with hydrophones, fire shots into the ocean floor and collect the echo on sensors. Goh said for every 10TB of data collected by the sensors, 1PB of simulation data is produced – 100X the original data.

That’s where the right side of the diagram comes in: high performance analytics (HPA), self-learning AI systems that can take voluminous amounts of data produced by HPC, put it in memory, and work up answers to questions.

Dr. Eng Lim Goh

The key to the data-centric system of the future is the border area in the middle of the diagram. That’s where memory (i.e., data) resides, like a queen bee. It will be surrounded by a variety of processors (CPUs, GPUs, FPGAs, ASICs, assigned jobs appropriate for their capabilities) operating around the data, like drones.

Looked at this way, in a world where most companies have analyzed only about 3 percent of their data on average, traditional HPC systems seem glaringly incomplete. Combining the left side of the diagram and the right, integrating HPC with HPA – that takes supercomputing somewhere new. That’s a machine with a new soul.

But Goh conceded there are barriers to HPC and HPA joining forces.

“The two worlds are very different,” Goh said. “The HPC world where I lived, I’m guilty of this. All these years we assumed data movement was free. Guess what? When Linpack started 20 years ago we didn’t consider data movement. Yet we’re still ranking our Top500 systems that way. We’re still guilty that way.

“But the data scientists of the world also have something to say about us,” he added. “They assume compute is free. Take Hadoop. Hadoop is a technique where you map your data out onto compute nodes, then do your computation, then you reduce the data you bring back. The data world called this MapReduce. So we have to bring the two worlds together. More and more now, people should be investing in one system of left and right, not just the left.”

Goh pointed to the middle of his diagram and said that’s where the big architectural challenge lies. “If you have to move an exabyte of data between system A and B, if they are two different systems, it will be impractical. The world will come to this (integration of HPC and HPA).”

That’s why the U.S. effort to develop a “capable” exascale computer by the early 2020’s puts as much emphasis on compute power as memory capacity. A mission document issued by the Exascale Computing Project said its intent to build a system not just with an exaflop of processing power but one that also can handle an Exabyte of data in memory.

Goh described HPE’s “Bridges” system at the Pittsburgh Supercomputer Center as a data-centric supercomputer that incorporates HPC and HPA, designed specifically for “scalable deep learning.”

“Essentially, it’s a bandwidth machine,” Goh said. “It’s a supercomputer, but really it’s a data mover. Not only are NVlinks all connected, they’re also GPU-connected, so clumps of four GPUs can talk to other clumps of four GPUs directly. Then we have four OPA’s coming out of each node, giving one OPA per GPU. So this is really a data machine.”

The Bridges supercomputer pulled off one of the most impressive game wins of the emerging AI era when it defeated four of the world’s top poker players earlier this year. Actually, the competition stretched across two years, Goh said, with the AI system losing $700,000 to the players the first year they played. The second year, with 10X more compute from the Bridges computer, the AI system (“Libratus”) took the four humans for $1.7 million, a classic hustle.

While IBM Deep Blue (chess) and Google’s AlphaGo have grabbed most of the machine-defeated-human headlines of late, it’s less well known that machines have beaten humans at checkers, which has 1020 “naïve” (or possible) combinations, since the early 1990s, several years before IBM beat the world’s top chess player. Chess has 1047 naïve combinations. How big is 1047? An exascale machine running for 100 years would complete only 1028 combinations. The point being that without integrated AI techniques, processing only gets you so far.

Go, meanwhile, has 10171 combinations. Poker, with “only” 10160 combinations, offers up the added complexity of “incomplete information.” By contrast with the three board games, in which you can see the pieces held by your opponent, in poker, you don’t know what your opponents have in their hands.

“So we didn’t solve chess, machines didn’t solve chess,” Goh said, “all they did was be good enough to be superhuman – to beat any human. That’s a term were going to hear more and more now.”

After Goh’s presentation, he was asked to response to Google not understanding how AlpaGo won the Go tournament. The issue, he said, is overcoming opacity.

“We’re working very hard to increasing transparency,” he said. “Some people have discussed the idea that there are many stages in a neural network, to intercept it in between those stages, and take its output and see if you can make sense of it.”

Leaving a strong role for human supervision also is important. He pointed out that since the Industrial Revolution, workers get promoted from first operating a machine to supervising machines.

He also discussed the distinction between the “correct” and the “right” answer. An AI-based system may deliver a correct answer, but whether it’s “right” – acceptable within human social mores, the bounds of business ethics, or even an aesthetic judgment – is something only humans can decide.

“Societal values need to be applied, human values need to be applied,” he said.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Research Scales to 11,400 Cores for EDA

August 5, 2021

For many HPC users, their needs are not evenly distributed throughout a year: some might need few – if any – resources for months, then they might need a very large system for a week. For those kinds of users, large Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learned from more than 100 years of combined experience. While it Read more…

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learn Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire