At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

By Doug Black

June 22, 2017

I’ve seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In this game, the brain doesn’t stand a chance.

Scoff at such talk as farfetched or far off in a hazy utopic/dystopic future. Roll your eyes and say we’ve heard the hype before (some of us remember a supercomputer company 25 years ago with the inflated name of “Thinking Machines,” long defunct). But it’s neither futuristic nor hype, it’s happening now, the technology pieces are taking shape, and the implications for business, for the work world and for our everyday lives – for good or ill – are as staggering as they are real.

Aside: It’s somewhat unsettling that conference attendees here in Frankfurt don’t seem particularly interested in those implications. For the moment, ISC is at the gathering point of computer scientists bringing about massive technological change, but nearly all the talk here is about the “how” of AI systems, not the “what then?” But there’s one anecdote making the rounds that has raised eyebrows: when Google engineers were asked to how its AlphaGo machine the winning move against the world champion of Go (the world’s most complex board game), the answer was: “We don’t know” (more on this below).

Quite consciously, engineers are architecting HPC systems along the lines of our brain. The new architecture is an emerging style of computing called “data intensive” or “data centric.” It replaces processing with memory (i.e., data) at the center of the computing universe. Combined with advanced algorithms, new memory and processor technologies are coming on line to make the new architecture a practical reality. Once the pieces are in place, the next step will be to scale these systems beyond all measure of human brain capacity.

What does data centric computing mean? How does it work? Why does it represent a major shift in advanced scale computing?

Let’s start answering those questions by first looking at how data centric systems are measured. The benchmark for new AI systems isn’t how fast they solve linear algebra problems (i.e., Linpack). That’s how processor-centric systems have been measured for decades, and considering the capabilities of data-centric systems under development, that benchmark seems wholly inadequate.

Rather than throughput, AI-based systems are measured in relation to people: their ability to compete with humans at our most intellectually challenging games of reason – checkers, chess, Go, poker. The standard of success isn’t training the system to become perfect at it, or to “solve” the game (i.e., work out every possible combination of moves). The benchmark is playing the game better than any human.

That’s the objective. Once the system is better than any of us, it’s ready to move into an advisory role, providing guidance and suggestions, augmenting our capabilities. For now. In a decade or so, these systems will take over tasks for us altogether.

Driving is a prime example. If driving were a game, humans would still beat machines – even though statistics show we’re getting worse at it (according to Dr. Pradeep Dubey, Intel Fellow, Intel Labs & Director, Parallel Computing Lab, who presented at ISC on autonomous vehicle technology). Around the world, two people are killed in car accidents each minute. In the U.S., 40,000 people are killed annually and 2 million suffer permanent injuries.

Meanwhile, AI is enabling machines to get better at driving. A convergence point is coming. For now, the car’s intelligence is limited to navigating, warning us about traffic conditions and setting off beepers when we get close to curbs and other cars.

The next step: our roads will have special lanes where we’ll temporarily hand over operation of the car to itself. A few years after that, we won’t drive at all. Driving is a game in which machines will soon be much better than we are.

Dr. Eng Lim Goh, Vice President of HPE and an industry visionary for decades, is a prime driver of new AI system development. At ISC this week, he discussed why AI in all its forms – machine learning, deep learning, strategic reasoning, etc. – is the driving force bringing about “data intensive” computing architectures.

Here’s his schema for the data intensive computer:

The left side of the diagram is old-style, LINPACK-benchmarked, processor-centric computing. That’s where HPC happens. The processor is at the center. Data is sent to the CPU, simulations are run, and new, and more, data comes out. These systems have hit a wall of their own making. The problem occurs when HPC systems run their simulations, generating exponentially more machine-generated data than they started with. They’re producing data beyond the capability of data scientists to analyze. Big data isn’t big enough.

“For 30 years we’ve lived in this world where small amounts of data go in, and we apply supercomputing power onto our partial differential equations, or our models, to generate lots of data,” he said.

Already, Goh pointed out, there aren’t enough data scientists to meet demand for today’s data analytics requirements. For the torrents of machine-generated data to come, there’s an overwhelming need to automate how data is analyzed.

Take for example seismic exploration.

For exploration of energy reserves at sea, ships drag cables with hydrophones, fire shots into the ocean floor and collect the echo on sensors. Goh said for every 10TB of data collected by the sensors, 1PB of simulation data is produced – 100X the original data.

That’s where the right side of the diagram comes in: high performance analytics (HPA), self-learning AI systems that can take voluminous amounts of data produced by HPC, put it in memory, and work up answers to questions.

Dr. Eng Lim Goh

The key to the data-centric system of the future is the border area in the middle of the diagram. That’s where memory (i.e., data) resides, like a queen bee. It will be surrounded by a variety of processors (CPUs, GPUs, FPGAs, ASICs, assigned jobs appropriate for their capabilities) operating around the data, like drones.

Looked at this way, in a world where most companies have analyzed only about 3 percent of their data on average, traditional HPC systems seem glaringly incomplete. Combining the left side of the diagram and the right, integrating HPC with HPA – that takes supercomputing somewhere new. That’s a machine with a new soul.

But Goh conceded there are barriers to HPC and HPA joining forces.

“The two worlds are very different,” Goh said. “The HPC world where I lived, I’m guilty of this. All these years we assumed data movement was free. Guess what? When Linpack started 20 years ago we didn’t consider data movement. Yet we’re still ranking our Top500 systems that way. We’re still guilty that way.

“But the data scientists of the world also have something to say about us,” he added. “They assume compute is free. Take Hadoop. Hadoop is a technique where you map your data out onto compute nodes, then do your computation, then you reduce the data you bring back. The data world called this MapReduce. So we have to bring the two worlds together. More and more now, people should be investing in one system of left and right, not just the left.”

Goh pointed to the middle of his diagram and said that’s where the big architectural challenge lies. “If you have to move an exabyte of data between system A and B, if they are two different systems, it will be impractical. The world will come to this (integration of HPC and HPA).”

That’s why the U.S. effort to develop a “capable” exascale computer by the early 2020’s puts as much emphasis on compute power as memory capacity. A mission document issued by the Exascale Computing Project said its intent to build a system not just with an exaflop of processing power but one that also can handle an Exabyte of data in memory.

Goh described HPE’s “Bridges” system at the Pittsburgh Supercomputer Center as a data-centric supercomputer that incorporates HPC and HPA, designed specifically for “scalable deep learning.”

“Essentially, it’s a bandwidth machine,” Goh said. “It’s a supercomputer, but really it’s a data mover. Not only are NVlinks all connected, they’re also GPU-connected, so clumps of four GPUs can talk to other clumps of four GPUs directly. Then we have four OPA’s coming out of each node, giving one OPA per GPU. So this is really a data machine.”

The Bridges supercomputer pulled off one of the most impressive game wins of the emerging AI era when it defeated four of the world’s top poker players earlier this year. Actually, the competition stretched across two years, Goh said, with the AI system losing $700,000 to the players the first year they played. The second year, with 10X more compute from the Bridges computer, the AI system (“Libratus”) took the four humans for $1.7 million, a classic hustle.

While IBM Deep Blue (chess) and Google’s AlphaGo have grabbed most of the machine-defeated-human headlines of late, it’s less well known that machines have beaten humans at checkers, which has 1020 “naïve” (or possible) combinations, since the early 1990s, several years before IBM beat the world’s top chess player. Chess has 1047 naïve combinations. How big is 1047? An exascale machine running for 100 years would complete only 1028 combinations. The point being that without integrated AI techniques, processing only gets you so far.

Go, meanwhile, has 10171 combinations. Poker, with “only” 10160 combinations, offers up the added complexity of “incomplete information.” By contrast with the three board games, in which you can see the pieces held by your opponent, in poker, you don’t know what your opponents have in their hands.

“So we didn’t solve chess, machines didn’t solve chess,” Goh said, “all they did was be good enough to be superhuman – to beat any human. That’s a term were going to hear more and more now.”

After Goh’s presentation, he was asked to response to Google not understanding how AlpaGo won the Go tournament. The issue, he said, is overcoming opacity.

“We’re working very hard to increasing transparency,” he said. “Some people have discussed the idea that there are many stages in a neural network, to intercept it in between those stages, and take its output and see if you can make sense of it.”

Leaving a strong role for human supervision also is important. He pointed out that since the Industrial Revolution, workers get promoted from first operating a machine to supervising machines.

He also discussed the distinction between the “correct” and the “right” answer. An AI-based system may deliver a correct answer, but whether it’s “right” – acceptable within human social mores, the bounds of business ethics, or even an aesthetic judgment – is something only humans can decide.

“Societal values need to be applied, human values need to be applied,” he said.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire