AI: Scaling Neural Networks Through Cost-Effective Memory Expansion

June 26, 2017

Neural networks offer a powerful new resource for analyzing large volumes of complex, unstructured data. However, most of today’s Artificial Intelligence (AI) deep learning frameworks rely on in-core processing, which means that all the relevant data must fit into main memory. As the size and complexity of a neural network grows, cost becomes a limiting factor. DRAM memory is simply too expensive.

Of course, memory bottlenecks are hardly new in intensive-computing environments such as High Performance Computing (HPC). Transferring large data sets to large numbers of high-performance cores has been an increasing challenge for decades. Fortunately, that is beginning to change. New Intel memory and storage technologies are being integrated into the Intel® Scalable System Framework (Intel® SSF) to help reverse this trend. They do this by moving high volume data closer to the processing cores, and by accelerating data movement at each tier of the memory and storage hierarchy.

Moving Data Closer to Compute

To accelerate the flow of data into the compute cores, Intel is integrating high-speed memory directly into Intel® Xeon® Phi™ processors and future Intel® Xeon® processors. By moving memory closer to compute resources, these solutions help to optimize core utilization. They also help to improve workload scaling. Intel Xeon Phi processors, for example, have demonstrated up to 97 percent scaling efficiency for deep learning workloads up to 32-nodes1.

Transforming the Economics of Memory

Intel® Optane™ technology provides even more far-reaching advantages for data movement. This groundbreaking, non-volatile memory technology combines the speed of DRAM with the capacity and cost efficiency of NAND.  Based on Intel® Optane™ technology, Intel® Optane™ SSDs are designed to provide 5-8x faster performance than Intel’s fastest NAND-based SSDs2.  Intel Optane SSDs can be combined with Intel® Memory Drive Technology to extend memory and provide cost-effective, large-memory pools.

When connected over the PCIe bus, an Intel Optane SSD provides an efficient extension to system memory. Behind the scenes, the Intel Memory Drive Technology transparently integrates the SSD into the memory subsystem and orchestrates data movement. “Hot” data is automatically pushed onto the DRAM to maximize performance. The OS and applications see a single high-speed memory pool, so no software changes are required.

Figure 1. You can extend memory cost-effectively using high-speed Intel® Optane™ SSDs and Intel® Memory Drive Technology.
Figure 1. You can extend memory cost-effectively using high-speed Intel® Optane™ SSDs and Intel® Memory Drive Technology.

How good is performance? Based on Intel internal testing, the DRAM + Intel Optane SSD combination provides roughly 75 to 80 percent of the performance of a comparable DRAM-only solution3. The outlook may be even better for deep learning applications. Intel engineers found that the DRAM + Intel Optane SSD combination can optimize a data locality and minimize cross socket traffic which could result in better performance4 than the DRAM-only solution. This is the case for big datasets distributed across all system memory where every application thread has access to all data. Such an example could be found in the General Matrix Multiplication (GEMM) benchmark which represents some portion of Deep Learning core algorithms.

Accelerating Storage

With today’s exploding data volumes, transferring data from bulk storage to local storage to cluster memory can lead to operational bottlenecks at any point. Intel Optane SSDs can be used as high-speed buffers to break through these barriers. A relatively small number of Intel® Optane™ SSDs can dramatically reduce data transfer times. They can also improve performance for applications that are constrained by excessive storage latency or insufficient storage bandwidth.

Figure 2. Intel® Scalable System Framework simplifies the design of efficient, high-performing clusters that optimize the value of HPC investments.
Figure 2. Intel® Scalable System Framework simplifies the design of efficient, high-performing clusters that optimize the value of HPC investments.

Simplifying Integration with Intel® Scalable System Framework (Intel® SSF)

By accelerating data movement, Intel Optane SSDs—and future Intel products based on Intel Optane technology—will help to transform many aspects of HPC and AI.  Their inclusion in Intel SSF will make it easier for organizations to take advantage of emerging memory and storage solutions based on this new technology.

As deep learning emerges as a mainstream HPC workload, these balanced, large-memory cluster solutions will help organizations deploy massive neural networks to analyze some of the world’s largest and most complex datasets.Intel SSF provides a scalable blueprint for efficient clusters that deliver higher value through increased integration and balanced designs. This system-level focus helps Intel synchronize innovation across all layers of the HPC and AI solution stack, so new technologies can be integrated more easily by system vendors and end-user organizations.

Stay tuned for additional articles focusing on the benefits Intel SSF brings to AI at each level of the solution stack through balanced innovation in compute, fabric, storage, and software technologies.

 

1 https://syncedreview.com/2017/04/15/what-does-it-take-for-intel-to-seize-the-ai-market/

2 https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-dc-p4800x-brief.html

3 Based on Intel internal testing using SGEMM MKL from the Intel® Math Kernel Library. System under test (DRAM + SSD): 2 X Intel® Xeon® processor E5-2699 v4, Intel® Server Board S2600WT, 128 GB DDR4 memory + 4 X Intel® Optane SSD SSDPED1K375GA), Cent OS 7.3.1611. Baseline system (all DRAM): 2 X Intel® Xeon® processor E5-2699 v4, Intel® Server Board S2600WT, 768 GB DDR4 memory, Cent OS 7.3.1611.

4 Achieving higher performance while using less DRAM memory was made possible by Intel® Memory Drive Technology, which automatically takes advantage of NUMA technology in Intel processors to enhance data placement not only across the hybrid memory space, but also within the available DRAM memory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UT Dallas Grows HPC Storage Footprint for Animation and Game Development

October 28, 2020

Computer-generated animation and video game development are extraordinarily computationally intensive fields, with studios often requiring large server farms with hundreds of terabytes – or even petabytes – of storag Read more…

By Staff report

Frame by Frame, Supercomputing Reveals the Forms of the Coronavirus

October 27, 2020

From the start of the pandemic, supercomputing research has been targeting one particular protein of the coronavirus: the notorious “S” or “spike” protein, which allows the virus to pry its way into human cells a Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. The acquisition helps AMD keep pace during a time of consolida Read more…

By John Russell

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

AWS Solution Channel

Rapid Chip Design in the Cloud

Time-to-market and engineering efficiency are the most critical and expensive metrics for a chip design company. With this in mind, the team at Annapurna Labs selected Altair AcceleratorRead more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. Th Read more…

By John Russell

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This