AI: Scaling Neural Networks Through Cost-Effective Memory Expansion

June 26, 2017

Neural networks offer a powerful new resource for analyzing large volumes of complex, unstructured data. However, most of today’s Artificial Intelligence (AI) deep learning frameworks rely on in-core processing, which means that all the relevant data must fit into main memory. As the size and complexity of a neural network grows, cost becomes a limiting factor. DRAM memory is simply too expensive.

Of course, memory bottlenecks are hardly new in intensive-computing environments such as High Performance Computing (HPC). Transferring large data sets to large numbers of high-performance cores has been an increasing challenge for decades. Fortunately, that is beginning to change. New Intel memory and storage technologies are being integrated into the Intel® Scalable System Framework (Intel® SSF) to help reverse this trend. They do this by moving high volume data closer to the processing cores, and by accelerating data movement at each tier of the memory and storage hierarchy.

Moving Data Closer to Compute

To accelerate the flow of data into the compute cores, Intel is integrating high-speed memory directly into Intel® Xeon® Phi™ processors and future Intel® Xeon® processors. By moving memory closer to compute resources, these solutions help to optimize core utilization. They also help to improve workload scaling. Intel Xeon Phi processors, for example, have demonstrated up to 97 percent scaling efficiency for deep learning workloads up to 32-nodes1.

Transforming the Economics of Memory

Intel® Optane™ technology provides even more far-reaching advantages for data movement. This groundbreaking, non-volatile memory technology combines the speed of DRAM with the capacity and cost efficiency of NAND.  Based on Intel® Optane™ technology, Intel® Optane™ SSDs are designed to provide 5-8x faster performance than Intel’s fastest NAND-based SSDs2.  Intel Optane SSDs can be combined with Intel® Memory Drive Technology to extend memory and provide cost-effective, large-memory pools.

When connected over the PCIe bus, an Intel Optane SSD provides an efficient extension to system memory. Behind the scenes, the Intel Memory Drive Technology transparently integrates the SSD into the memory subsystem and orchestrates data movement. “Hot” data is automatically pushed onto the DRAM to maximize performance. The OS and applications see a single high-speed memory pool, so no software changes are required.

Figure 1. You can extend memory cost-effectively using high-speed Intel® Optane™ SSDs and Intel® Memory Drive Technology.
Figure 1. You can extend memory cost-effectively using high-speed Intel® Optane™ SSDs and Intel® Memory Drive Technology.

How good is performance? Based on Intel internal testing, the DRAM + Intel Optane SSD combination provides roughly 75 to 80 percent of the performance of a comparable DRAM-only solution3. The outlook may be even better for deep learning applications. Intel engineers found that the DRAM + Intel Optane SSD combination can optimize a data locality and minimize cross socket traffic which could result in better performance4 than the DRAM-only solution. This is the case for big datasets distributed across all system memory where every application thread has access to all data. Such an example could be found in the General Matrix Multiplication (GEMM) benchmark which represents some portion of Deep Learning core algorithms.

Accelerating Storage

With today’s exploding data volumes, transferring data from bulk storage to local storage to cluster memory can lead to operational bottlenecks at any point. Intel Optane SSDs can be used as high-speed buffers to break through these barriers. A relatively small number of Intel® Optane™ SSDs can dramatically reduce data transfer times. They can also improve performance for applications that are constrained by excessive storage latency or insufficient storage bandwidth.

Figure 2. Intel® Scalable System Framework simplifies the design of efficient, high-performing clusters that optimize the value of HPC investments.
Figure 2. Intel® Scalable System Framework simplifies the design of efficient, high-performing clusters that optimize the value of HPC investments.

Simplifying Integration with Intel® Scalable System Framework (Intel® SSF)

By accelerating data movement, Intel Optane SSDs—and future Intel products based on Intel Optane technology—will help to transform many aspects of HPC and AI.  Their inclusion in Intel SSF will make it easier for organizations to take advantage of emerging memory and storage solutions based on this new technology.

As deep learning emerges as a mainstream HPC workload, these balanced, large-memory cluster solutions will help organizations deploy massive neural networks to analyze some of the world’s largest and most complex datasets.Intel SSF provides a scalable blueprint for efficient clusters that deliver higher value through increased integration and balanced designs. This system-level focus helps Intel synchronize innovation across all layers of the HPC and AI solution stack, so new technologies can be integrated more easily by system vendors and end-user organizations.

Stay tuned for additional articles focusing on the benefits Intel SSF brings to AI at each level of the solution stack through balanced innovation in compute, fabric, storage, and software technologies.

 

1 https://syncedreview.com/2017/04/15/what-does-it-take-for-intel-to-seize-the-ai-market/

2 https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-dc-p4800x-brief.html

3 Based on Intel internal testing using SGEMM MKL from the Intel® Math Kernel Library. System under test (DRAM + SSD): 2 X Intel® Xeon® processor E5-2699 v4, Intel® Server Board S2600WT, 128 GB DDR4 memory + 4 X Intel® Optane SSD SSDPED1K375GA), Cent OS 7.3.1611. Baseline system (all DRAM): 2 X Intel® Xeon® processor E5-2699 v4, Intel® Server Board S2600WT, 768 GB DDR4 memory, Cent OS 7.3.1611.

4 Achieving higher performance while using less DRAM memory was made possible by Intel® Memory Drive Technology, which automatically takes advantage of NUMA technology in Intel processors to enhance data placement not only across the hybrid memory space, but also within the available DRAM memory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This