DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

By HPCwire Staff

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The one-year awards are set to begin July 1. Several of the 2017-2018 ALCC projects will be the first to run on the ALCF’s new 9.65 petaflops Intel-Cray supercomputer, Theta, when it opens to the full user community July 1.

Theta, of course, is based on the second-generation of the Intel Xeon Phi processor (more detailed system description at the end of article). Projects in the Theta Early Science Program performed science simulations on the system, but those runs served a dual purpose of helping to stress-test and evaluate Theta’s capabilities. The new projects are focused on the science research.

Each year, the ALCC program selects projects with an emphasis on high-risk, high-payoff simulations in areas directly related to the DOE mission and for broadening the community of researchers capable of using leadership computing resources. In 2017, the ALCC program awarded 40 projects totaling 4.1 billion core-hours across the three ASCR facilities. More 2017/2018 projects may be announced at a later date as ALCC proposals can be submitted throughout the year.

For one of the 2017-2018 ALCC projects, Argonne physicist Katrin Heitmann will use ALCF computing resources to continue work to build a suite of multi-wavelength, multi-cosmology synthetic sky maps. The left image (red) shows the baryonic density in a large cluster of galaxies, while the right image (blue) shows the dark matter content in the same cluster.

The 24 projects awarded time at the ALCF are noted below. Some projects received additional computing time at OLCF and/or NERSC.

  • Thomas Blum from University of Connecticut received 220 million core-hours for “Hadronic Light-by-Light Scattering and Vacuum Polarization Contributions to the Muon Anomalous Magnetic Moment from Lattice QCD with Chiral Fermions.”
  • Choong-Seock Chang from Princeton Plasma Physics Laboratory received 80 million core-hours for “High-Fidelity Gyrokinetic Study of Divertor Heat-Flux Width and Pedestal Structure.”
  • John T. Childers from Argonne National Laboratory received 58 million core-hours for “Simulating Particle Interactions and the Resulting Detector Response at the LHC and Fermilab.”
  • Frederico Fiuza from SLAC National Accelerator Laboratory received 50 million core-hours for “Studying Astrophysical Particle Acceleration in HED Plasmas.”
  • Marco Govoni from Argonne National Laboratory received 60 million core- hours for “Computational Engineering of Electron-Vibration Coupling Mechanisms.”
  • William Gustafson from Pacific Northwest National Laboratory received 74 million core-hours for “Large-Eddy Simulation Component of the Mesoscale Convective System Climate Model Development and Validation (CMDV-MCS) Project.”
  • Olle Heinonen from Argonne National Laboratory received 5 million core-hours for “Quantum Monte Carlo Computations of Chemical Systems.”
  • Katrin Heitmann from Argonne National Laboratory received 40 million core-hours for “Extreme-Scale Simulations for Multi-Wavelength Cosmology Investigations.”
  • Phay Hofrom Argonne National Laboratory received 68 million core-hours for “Imaging Transient Structures in Heterogeneous Nanoclusters in Intense X-ray Pulses.”
  • George Karniadakis from Brown University received 20 million core-hours for “Multiscale Simulations of Hematological Disorders.”
  • Daniel Livescu from Los Alamos National Laboratory received 60 million core-hours for “Non-Boussinesq Effects on Buoyancy-Driven Variable Density Turbulence.”
  • Alessandro Lovato from Argonne National Laboratory received 35 million core-hours for “Nuclear Spectra with Chiral Forces.”
  • Elia Merzari from Argonne National Laboratory received 85 million core-hours for “High-Fidelity Numerical Simulation of Wire-Wrapped Fuel Assemblies.”
  • Paul Messina from Argonne National Laboratory received 530 million core-hours for “ECP Consortium for Exascale Computing.”
  • Aleksandr Obabko from Argonne National Laboratory received 50 million core-hours for “Numerical Simulation of Turbulent Flows in Advanced Steam Generators – Year 3.”
  • Mark Petersen from Los Alamos National Laboratory received 25 million core-hours for “Understanding the Role of Ice Shelf-Ocean Interactions in a Changing Global Climate.”
  • Benoit Roux from the University of Chicago received 80 million core-hours for “Protein-Protein Recognition and HPC Infrastructure.”
  • Emily Shemon from Argonne National Laboratory received 44 million core-hours for “Elimination of Modeling Uncertainties through High-Fidelity Multiphysics Simulation to Improve Nuclear Reactor Safety and Economics.”
  • Ilja Siepmann from University of Minnesota received 130 million core-hours for “Predictive Modeling of Functional Nanoporous Materials, Nanoparticle Assembly, and Reactive Systems.”
  • Tjerk Straatsma from Oak Ridge National Laboratory received 20 million core-hours for “Portable Application Development for Next-Generation Supercomputer Architectures.”
  • Sergey Syritsyn from RIKEN BNL Research Center received 135 million core-hours for “Nucleon Structure and Electric Dipole Moments with Physical Chirally-Symmetric Quarks.”
  • Sergey Varganov from University of Nevada, Reno received 42 million core-hours for “Spin-Forbidden Catalysis on Metal-Sulfur Proteins.”
  • Robert Voigt from Leidos received 110 million core-hours for “Demonstration of the Scalability of Programming Environments By Simulating Multi-Scale Applications.”
  • Brian Wirth from Oak Ridge National Laboratory received 98 million core-hours for “Modeling Helium-Hydrogen Plasma Mediated Tungsten Surface Response to Predict Fusion Plasma Facing Component Performance.”

Managed by the Advanced Scientific Computing Research (ASCR) program within DOE’s Office of Science, the ALCC program provides awards of computing time that range from a few million to several-hundred-million core-hours to researchers from industry, academia, and government agencies. These allocations support work at the ALCF, the Oak Ridge Leadership Computing Facility (OLCF), and the National Energy Research Scientific Computing Center (NERSC), all DOE Office of Science User Facilities.

Theta Description (from ALCF web site):
Designed in collaboration with Intel and Cray, Theta will serve as a stepping stone to the ALCF’s next leadership-class supercomputer, Aurora. Both Theta and Aurora will be massively parallel, many-core systems based on Intel processors and interconnect technology, a new memory architecture, and a Lustre-based parallel file system, all integrated by Cray’s HPC software stack.

Theta is equipped with 3,624 nodes, each containing a 64 core processor with 16 gigabytes (GB) of high-bandwidth in-package memory (MCDRAM), 192 GB of DDR4 RAM, and a 128 GB SSD. Theta’s initial parallel file system is 10 petabytes.

Theta has several features that will allow scientific codes to achieve higher performance, including:

  • High-bandwidth MCDRAM (300 – 450 GB/s depending on memory and cluster mode), with many applications running entirely in MCDRAM or using it effectively with DDR4 RAM
  • Improved single thread performance
  • Potentially much better vectorization with AVX-512
  • Large total memory per node (208 GB on Theta vs. 16 GB on Mira)

Theta System Configuration

  • 20 racks
  • 3,624 nodes
  • 231,935 cores
  • 56 TB MCDRAM
  • 679 TB DDR4
  • 453 TB SSD
  • Aries interconnect with Dragonfly configuration
  • 10 PB Lustre file system
  • Peak performance of 9.65 petaflops

Link to ALCF Article: http://www.alcf.anl.gov/articles/alcc-program-awards-alcf-computing-time-24-projects

Link to ASCR Leadership Computing Challenge: https://science.energy.gov/ascr/facilities/accessing-ascr-facilities/alcc/alcc-current-awards/

Source: Argonne Leadership Computing Facility

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This