DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

By HPCwire Staff

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The one-year awards are set to begin July 1. Several of the 2017-2018 ALCC projects will be the first to run on the ALCF’s new 9.65 petaflops Intel-Cray supercomputer, Theta, when it opens to the full user community July 1.

Theta, of course, is based on the second-generation of the Intel Xeon Phi processor (more detailed system description at the end of article). Projects in the Theta Early Science Program performed science simulations on the system, but those runs served a dual purpose of helping to stress-test and evaluate Theta’s capabilities. The new projects are focused on the science research.

Each year, the ALCC program selects projects with an emphasis on high-risk, high-payoff simulations in areas directly related to the DOE mission and for broadening the community of researchers capable of using leadership computing resources. In 2017, the ALCC program awarded 40 projects totaling 4.1 billion core-hours across the three ASCR facilities. More 2017/2018 projects may be announced at a later date as ALCC proposals can be submitted throughout the year.

For one of the 2017-2018 ALCC projects, Argonne physicist Katrin Heitmann will use ALCF computing resources to continue work to build a suite of multi-wavelength, multi-cosmology synthetic sky maps. The left image (red) shows the baryonic density in a large cluster of galaxies, while the right image (blue) shows the dark matter content in the same cluster.

The 24 projects awarded time at the ALCF are noted below. Some projects received additional computing time at OLCF and/or NERSC.

  • Thomas Blum from University of Connecticut received 220 million core-hours for “Hadronic Light-by-Light Scattering and Vacuum Polarization Contributions to the Muon Anomalous Magnetic Moment from Lattice QCD with Chiral Fermions.”
  • Choong-Seock Chang from Princeton Plasma Physics Laboratory received 80 million core-hours for “High-Fidelity Gyrokinetic Study of Divertor Heat-Flux Width and Pedestal Structure.”
  • John T. Childers from Argonne National Laboratory received 58 million core-hours for “Simulating Particle Interactions and the Resulting Detector Response at the LHC and Fermilab.”
  • Frederico Fiuza from SLAC National Accelerator Laboratory received 50 million core-hours for “Studying Astrophysical Particle Acceleration in HED Plasmas.”
  • Marco Govoni from Argonne National Laboratory received 60 million core- hours for “Computational Engineering of Electron-Vibration Coupling Mechanisms.”
  • William Gustafson from Pacific Northwest National Laboratory received 74 million core-hours for “Large-Eddy Simulation Component of the Mesoscale Convective System Climate Model Development and Validation (CMDV-MCS) Project.”
  • Olle Heinonen from Argonne National Laboratory received 5 million core-hours for “Quantum Monte Carlo Computations of Chemical Systems.”
  • Katrin Heitmann from Argonne National Laboratory received 40 million core-hours for “Extreme-Scale Simulations for Multi-Wavelength Cosmology Investigations.”
  • Phay Hofrom Argonne National Laboratory received 68 million core-hours for “Imaging Transient Structures in Heterogeneous Nanoclusters in Intense X-ray Pulses.”
  • George Karniadakis from Brown University received 20 million core-hours for “Multiscale Simulations of Hematological Disorders.”
  • Daniel Livescu from Los Alamos National Laboratory received 60 million core-hours for “Non-Boussinesq Effects on Buoyancy-Driven Variable Density Turbulence.”
  • Alessandro Lovato from Argonne National Laboratory received 35 million core-hours for “Nuclear Spectra with Chiral Forces.”
  • Elia Merzari from Argonne National Laboratory received 85 million core-hours for “High-Fidelity Numerical Simulation of Wire-Wrapped Fuel Assemblies.”
  • Paul Messina from Argonne National Laboratory received 530 million core-hours for “ECP Consortium for Exascale Computing.”
  • Aleksandr Obabko from Argonne National Laboratory received 50 million core-hours for “Numerical Simulation of Turbulent Flows in Advanced Steam Generators – Year 3.”
  • Mark Petersen from Los Alamos National Laboratory received 25 million core-hours for “Understanding the Role of Ice Shelf-Ocean Interactions in a Changing Global Climate.”
  • Benoit Roux from the University of Chicago received 80 million core-hours for “Protein-Protein Recognition and HPC Infrastructure.”
  • Emily Shemon from Argonne National Laboratory received 44 million core-hours for “Elimination of Modeling Uncertainties through High-Fidelity Multiphysics Simulation to Improve Nuclear Reactor Safety and Economics.”
  • Ilja Siepmann from University of Minnesota received 130 million core-hours for “Predictive Modeling of Functional Nanoporous Materials, Nanoparticle Assembly, and Reactive Systems.”
  • Tjerk Straatsma from Oak Ridge National Laboratory received 20 million core-hours for “Portable Application Development for Next-Generation Supercomputer Architectures.”
  • Sergey Syritsyn from RIKEN BNL Research Center received 135 million core-hours for “Nucleon Structure and Electric Dipole Moments with Physical Chirally-Symmetric Quarks.”
  • Sergey Varganov from University of Nevada, Reno received 42 million core-hours for “Spin-Forbidden Catalysis on Metal-Sulfur Proteins.”
  • Robert Voigt from Leidos received 110 million core-hours for “Demonstration of the Scalability of Programming Environments By Simulating Multi-Scale Applications.”
  • Brian Wirth from Oak Ridge National Laboratory received 98 million core-hours for “Modeling Helium-Hydrogen Plasma Mediated Tungsten Surface Response to Predict Fusion Plasma Facing Component Performance.”

Managed by the Advanced Scientific Computing Research (ASCR) program within DOE’s Office of Science, the ALCC program provides awards of computing time that range from a few million to several-hundred-million core-hours to researchers from industry, academia, and government agencies. These allocations support work at the ALCF, the Oak Ridge Leadership Computing Facility (OLCF), and the National Energy Research Scientific Computing Center (NERSC), all DOE Office of Science User Facilities.

Theta Description (from ALCF web site):
Designed in collaboration with Intel and Cray, Theta will serve as a stepping stone to the ALCF’s next leadership-class supercomputer, Aurora. Both Theta and Aurora will be massively parallel, many-core systems based on Intel processors and interconnect technology, a new memory architecture, and a Lustre-based parallel file system, all integrated by Cray’s HPC software stack.

Theta is equipped with 3,624 nodes, each containing a 64 core processor with 16 gigabytes (GB) of high-bandwidth in-package memory (MCDRAM), 192 GB of DDR4 RAM, and a 128 GB SSD. Theta’s initial parallel file system is 10 petabytes.

Theta has several features that will allow scientific codes to achieve higher performance, including:

  • High-bandwidth MCDRAM (300 – 450 GB/s depending on memory and cluster mode), with many applications running entirely in MCDRAM or using it effectively with DDR4 RAM
  • Improved single thread performance
  • Potentially much better vectorization with AVX-512
  • Large total memory per node (208 GB on Theta vs. 16 GB on Mira)

Theta System Configuration

  • 20 racks
  • 3,624 nodes
  • 231,935 cores
  • 56 TB MCDRAM
  • 679 TB DDR4
  • 453 TB SSD
  • Aries interconnect with Dragonfly configuration
  • 10 PB Lustre file system
  • Peak performance of 9.65 petaflops

Link to ALCF Article: http://www.alcf.anl.gov/articles/alcc-program-awards-alcf-computing-time-24-projects

Link to ASCR Leadership Computing Challenge: https://science.energy.gov/ascr/facilities/accessing-ascr-facilities/alcc/alcc-current-awards/

Source: Argonne Leadership Computing Facility

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Dark Matter, Arrhythmia, Sustainability & More

February 28, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Microsoft Announces General Availability of AMD-backed Azure HBv2 Instances for HPC

February 27, 2020

Nearly seven months after they were first announced, Microsoft Azure’s HPC-targeted HBv2 virtual machines (VMs) based on AMD second-generation Epyc processors are ready for primetime. The new VMs, which Azure claims of Read more…

By Staff report

Sequoia Decommissioned, Making Room for El Capitan

February 27, 2020

After eight years of service, Sequoia has been felled. Once the most powerful publicly ranked supercomputer in the world, Sequoia – hosted by Lawrence Livermore National Laboratory (LLNL) – has been decommissioned to Read more…

By Oliver Peckham

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Blue Waters Supercomputer Helps Tackle Pandemic Flu Simulations

February 26, 2020

While not the novel coronavirus that is now sweeping across the world, the 2009 H1N1 flu pandemic (pH1N1) infected up to 21 percent of the global population and killed over 200,000 people. Now, a team of researchers from Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Micron Accelerator Bumps Up Memory Bandwidth

February 26, 2020

Deep learning accelerators based on chip architectures coupled with high-bandwidth memory are emerging to enable near real-time processing of machine learning algorithms. Memory chip specialist Micron Technology argues t Read more…

By George Leopold

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

NOAA Lays Out Aggressive New AI Strategy

February 24, 2020

Roughly coincident with last week’s announcement of a planned tripling of its compute capacity, the National Oceanic and Atmospheric Administration issued an Read more…

By John Russell

New Supercomputer Cooling Method Saves Half-Million Gallons of Water at Sandia National Laboratories

February 24, 2020

A new cooling method for supercomputer systems is picking up steam – literally. After saving millions of gallons of water at a National Renewable Energy Laboratory (NREL) datacenter, this innovative approach, called... Read more…

By Oliver Peckham

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This