DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

By HPCwire Staff

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The one-year awards are set to begin July 1. Several of the 2017-2018 ALCC projects will be the first to run on the ALCF’s new 9.65 petaflops Intel-Cray supercomputer, Theta, when it opens to the full user community July 1.

Theta, of course, is based on the second-generation of the Intel Xeon Phi processor (more detailed system description at the end of article). Projects in the Theta Early Science Program performed science simulations on the system, but those runs served a dual purpose of helping to stress-test and evaluate Theta’s capabilities. The new projects are focused on the science research.

Each year, the ALCC program selects projects with an emphasis on high-risk, high-payoff simulations in areas directly related to the DOE mission and for broadening the community of researchers capable of using leadership computing resources. In 2017, the ALCC program awarded 40 projects totaling 4.1 billion core-hours across the three ASCR facilities. More 2017/2018 projects may be announced at a later date as ALCC proposals can be submitted throughout the year.

For one of the 2017-2018 ALCC projects, Argonne physicist Katrin Heitmann will use ALCF computing resources to continue work to build a suite of multi-wavelength, multi-cosmology synthetic sky maps. The left image (red) shows the baryonic density in a large cluster of galaxies, while the right image (blue) shows the dark matter content in the same cluster.

The 24 projects awarded time at the ALCF are noted below. Some projects received additional computing time at OLCF and/or NERSC.

  • Thomas Blum from University of Connecticut received 220 million core-hours for “Hadronic Light-by-Light Scattering and Vacuum Polarization Contributions to the Muon Anomalous Magnetic Moment from Lattice QCD with Chiral Fermions.”
  • Choong-Seock Chang from Princeton Plasma Physics Laboratory received 80 million core-hours for “High-Fidelity Gyrokinetic Study of Divertor Heat-Flux Width and Pedestal Structure.”
  • John T. Childers from Argonne National Laboratory received 58 million core-hours for “Simulating Particle Interactions and the Resulting Detector Response at the LHC and Fermilab.”
  • Frederico Fiuza from SLAC National Accelerator Laboratory received 50 million core-hours for “Studying Astrophysical Particle Acceleration in HED Plasmas.”
  • Marco Govoni from Argonne National Laboratory received 60 million core- hours for “Computational Engineering of Electron-Vibration Coupling Mechanisms.”
  • William Gustafson from Pacific Northwest National Laboratory received 74 million core-hours for “Large-Eddy Simulation Component of the Mesoscale Convective System Climate Model Development and Validation (CMDV-MCS) Project.”
  • Olle Heinonen from Argonne National Laboratory received 5 million core-hours for “Quantum Monte Carlo Computations of Chemical Systems.”
  • Katrin Heitmann from Argonne National Laboratory received 40 million core-hours for “Extreme-Scale Simulations for Multi-Wavelength Cosmology Investigations.”
  • Phay Hofrom Argonne National Laboratory received 68 million core-hours for “Imaging Transient Structures in Heterogeneous Nanoclusters in Intense X-ray Pulses.”
  • George Karniadakis from Brown University received 20 million core-hours for “Multiscale Simulations of Hematological Disorders.”
  • Daniel Livescu from Los Alamos National Laboratory received 60 million core-hours for “Non-Boussinesq Effects on Buoyancy-Driven Variable Density Turbulence.”
  • Alessandro Lovato from Argonne National Laboratory received 35 million core-hours for “Nuclear Spectra with Chiral Forces.”
  • Elia Merzari from Argonne National Laboratory received 85 million core-hours for “High-Fidelity Numerical Simulation of Wire-Wrapped Fuel Assemblies.”
  • Paul Messina from Argonne National Laboratory received 530 million core-hours for “ECP Consortium for Exascale Computing.”
  • Aleksandr Obabko from Argonne National Laboratory received 50 million core-hours for “Numerical Simulation of Turbulent Flows in Advanced Steam Generators – Year 3.”
  • Mark Petersen from Los Alamos National Laboratory received 25 million core-hours for “Understanding the Role of Ice Shelf-Ocean Interactions in a Changing Global Climate.”
  • Benoit Roux from the University of Chicago received 80 million core-hours for “Protein-Protein Recognition and HPC Infrastructure.”
  • Emily Shemon from Argonne National Laboratory received 44 million core-hours for “Elimination of Modeling Uncertainties through High-Fidelity Multiphysics Simulation to Improve Nuclear Reactor Safety and Economics.”
  • Ilja Siepmann from University of Minnesota received 130 million core-hours for “Predictive Modeling of Functional Nanoporous Materials, Nanoparticle Assembly, and Reactive Systems.”
  • Tjerk Straatsma from Oak Ridge National Laboratory received 20 million core-hours for “Portable Application Development for Next-Generation Supercomputer Architectures.”
  • Sergey Syritsyn from RIKEN BNL Research Center received 135 million core-hours for “Nucleon Structure and Electric Dipole Moments with Physical Chirally-Symmetric Quarks.”
  • Sergey Varganov from University of Nevada, Reno received 42 million core-hours for “Spin-Forbidden Catalysis on Metal-Sulfur Proteins.”
  • Robert Voigt from Leidos received 110 million core-hours for “Demonstration of the Scalability of Programming Environments By Simulating Multi-Scale Applications.”
  • Brian Wirth from Oak Ridge National Laboratory received 98 million core-hours for “Modeling Helium-Hydrogen Plasma Mediated Tungsten Surface Response to Predict Fusion Plasma Facing Component Performance.”

Managed by the Advanced Scientific Computing Research (ASCR) program within DOE’s Office of Science, the ALCC program provides awards of computing time that range from a few million to several-hundred-million core-hours to researchers from industry, academia, and government agencies. These allocations support work at the ALCF, the Oak Ridge Leadership Computing Facility (OLCF), and the National Energy Research Scientific Computing Center (NERSC), all DOE Office of Science User Facilities.

Theta Description (from ALCF web site):
Designed in collaboration with Intel and Cray, Theta will serve as a stepping stone to the ALCF’s next leadership-class supercomputer, Aurora. Both Theta and Aurora will be massively parallel, many-core systems based on Intel processors and interconnect technology, a new memory architecture, and a Lustre-based parallel file system, all integrated by Cray’s HPC software stack.

Theta is equipped with 3,624 nodes, each containing a 64 core processor with 16 gigabytes (GB) of high-bandwidth in-package memory (MCDRAM), 192 GB of DDR4 RAM, and a 128 GB SSD. Theta’s initial parallel file system is 10 petabytes.

Theta has several features that will allow scientific codes to achieve higher performance, including:

  • High-bandwidth MCDRAM (300 – 450 GB/s depending on memory and cluster mode), with many applications running entirely in MCDRAM or using it effectively with DDR4 RAM
  • Improved single thread performance
  • Potentially much better vectorization with AVX-512
  • Large total memory per node (208 GB on Theta vs. 16 GB on Mira)

Theta System Configuration

  • 20 racks
  • 3,624 nodes
  • 231,935 cores
  • 56 TB MCDRAM
  • 679 TB DDR4
  • 453 TB SSD
  • Aries interconnect with Dragonfly configuration
  • 10 PB Lustre file system
  • Peak performance of 9.65 petaflops

Link to ALCF Article: http://www.alcf.anl.gov/articles/alcc-program-awards-alcf-computing-time-24-projects

Link to ASCR Leadership Computing Challenge: https://science.energy.gov/ascr/facilities/accessing-ascr-facilities/alcc/alcc-current-awards/

Source: Argonne Leadership Computing Facility

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire