Perverse Incentives? How Economics (Mis-)shaped Academic Science

By Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center

July 12, 2017

The unintended consequences of how we fund academic research—in the U.S. and elsewhere—are strangling innovation, putting universities into debt and creating numerous PhD graduates and postdoctoral fellows who will not be able to get jobs in their chosen fields, according to economist Paula Stephan of Georgia State University.

The good news, Stephan said at the opening plenary session of the PEARC17 conference in New Orleans on July 11, is that researchers probably needn’t go back to the politicians to ask for more money. The bad news: the current system is so ingrained it’s hard to be optimistic.

“I don’t think it would take more funding to [encourage] more risk,” she said, but “unless we change the incentives in the system we’re going to continue to overbuild and over train.”

Stephan identified three major effects of the perverse incentives governing academic research: over-training, risk aversion and over-building of physical infrastructure. All three are problems in their own right but also feed back to make the situation worse.

“Economics is about incentives and cost,” Stephan explained, and both are problematic in most national funding systems. She particularly examined that of the U.S.

The Inaugural Practice and Experience in Advanced Research Computing (PEARC) conference—with the theme Sustainability, Success and Impact—stresses key objectives for those who manage, develop and use advanced research computing throughout the U.S. and the world. Organizations supporting this new HPC conference include the Advancing Research Computing on Campuses: Best Practices Workshop (ARCC), the Extreme Science and Engineering Development Environment (XSEDE), the Science Gateways Community Institute, the Campus Research Computing (CaRC) Consortium, the Advanced CyberInfrastructure Research and Education Facilitators (ACI-REF) consortium, the National Center for Supercomputing Applications’ Blue Waters project, ESnet, Open Science Grid, Compute Canada, the EGI Foundation, the Coalition for Academic Scientific Computation (CASC) and Internet2.

Over-training: A Plague of PhDs

Increasingly, Stephan argued, universities are following a “high-end shopping mall” model in which they “lease” space to researchers—the “stores.” Physical building, particularly during the funding increases of the 1990s, became a priority as universities vied to attract top-performing (read: highly funded) research faculty. One down side to this model, though, is that individual principal investigators took on so much of the risk. With about 95 percent of research faculty paying their own salaries through soft money, funding has become existential and devours increasing amounts of the average lab head’s time: One study estimated that PIs spend 42% of their professional time on grant administration and writing.

“This raises the issue of how you’re going to staff your lab,” Stephan said. While few researchers make a conscious decision to bias hiring toward some types of research workers, the economic pressures often give little choice.

The issue is stark in the decision of whether to employ graduate students, postdoctoral fellows or staff scientists to conduct lab research. Nationally, graduate students average a stipend of about $26,000 annually; in addition, they represent approximately an additional $16,000 or more for tuition and other student costs. Their hourly “pay rate,” then, can be between $19.50 and $27.50.

Postdoctoral fellows are paid more. But they also have no tuition costs and at most universities have few additional benefits. Assuming a university follows the NIH benchmark of $43,692 for a first-year postdoc, their hourly rate comes to around $17 to $18, depending on the field.

Staff scientists start at about $60,000 to $75,000, coming out to an hourly rate of about $30.00. But that doesn’t reflect their full cost, which includes much more extensive benefits than students or postdocs.

Given this incentive structure, Stephan explained, it isn’t hard to understand the relative scarcity of staff scientists. Her own study found that at least 72 percent of academic research papers had postdocs or grad students as their first author. In the NSF’s annual survey, life science PhD graduates with definite job commitments have fallen from a peak of 70% in 1994 to 58% in 2014—and most of those are going to postdoc positions, not permanent jobs.

With the scarcity of permanent positions for these postdocs to go to next, “academe has become the alternate career track” for PhDs, particularly in physics and the physical and life sciences, she said.

“Training [has become] less about the future supply and more about getting research and teaching done now,” Stephan said.

Aversion to Risk

Along with the oversupply of PhDs, the funding structure has created an atmosphere in which risk-taking is discouraged in the funding process. In an influential Proceedings of the National Academy of Science USA paper, biomedical giants Alberts, Kirscher, Tilghman and Varmus criticized biomedical research funding as overly risk averse. Researchers have perceived a similar problem in the physical sciences: Even DARPA, which once self-identified as funding risky projects, has been criticized for being over-cautious.

At the stage of grant application reviews, the common requirement for preliminary data among many reviewers tilts the field against high-risk projects. So does the use of bibliometric measures of author impact. The short-term nature of the funding cycle also discourages novelty: “It’s hard to recover from failure in three years,” Stephan said. And since the success rate for grant continuations is higher than that for new grants, the system encourages researchers to “stay in their lanes.”

“The stress on ‘translational’ outcomes” that provide immediate practical applications “also discourages risk,” she added.

Another study showed that highly novel papers tend to show pronounced payoffs at 13 years after publication but little at three years. Non-novel papers, on the other hand, pay off better at three-year cycles—but don’t improve over time.

If You Build It, They Will Not Necessarily Come

Overbuilding—the construction of unneeded university brick and mortar—came with the NIH budget doubling in the late 1990s. Universities, assuming continued growth, embarked on a “building binge” to attract top grant-attracting faculty. They borrowed to do so, partly because interest payments for debt service can be included in calculating indirect costs charged against those grants—and thus it would, presumably, “pay for itself.”

From 1988 to 2011, biomedical research floor space at the average university increased from 40,000 square feet to 90,000 square feet.

When funding declined in real dollars, unrecoverable debt and even facility mothballing followed. The annual average university debt service grew from $3.5 million in 2003 to $6.9 million in 2008. It created an economic drag on many research universities that will be hard to escape.

“All disciplines will pay for this, not just the biomedical sciences,” Stephan said.

The Way Out?

The irony, of course, is that the primary justification for government-funded research is to take risks that industry can’t.

For economists, the case for academe starts with a concept called “market failure,” Stephan explained. It’s the term used to describe the way most firms avoid overly risky projects; the difficulty of capturing financial benefits from fundamental discovery is a particular disincentive to pursue that which does not pay off in the near term.

“But the risky stuff shifts knowledge frontiers, eventually contributing to economic growth,” she said.

Excellence is not the same thing as risk-taking, Stephan took pains to add. Not all excellent research takes big risk; not all risky research is of high quality.

“I think as a country we need a portfolio,” she said. “It does not mean that there is not a substantial role for what we call ‘normal’ research.” But if we don’t change the incentive structures of our funding process—rewarding outcomes over longer time periods, creating incentives to encourage permanent rather than temporary jobs and make living on “soft money” less precarious, we won’t see the kind of innovation in which academic research was supposed to specialize.

“I’ve been working at this for too long, so I’m not wildly optimistic,” Stephan admitted.

Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center, is following a non-traditional career path for science PhDs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near- Read more…

By John Russell

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This