Perverse Incentives? How Economics (Mis-)shaped Academic Science

By Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center

July 12, 2017

The unintended consequences of how we fund academic research—in the U.S. and elsewhere—are strangling innovation, putting universities into debt and creating numerous PhD graduates and postdoctoral fellows who will not be able to get jobs in their chosen fields, according to economist Paula Stephan of Georgia State University.

The good news, Stephan said at the opening plenary session of the PEARC17 conference in New Orleans on July 11, is that researchers probably needn’t go back to the politicians to ask for more money. The bad news: the current system is so ingrained it’s hard to be optimistic.

“I don’t think it would take more funding to [encourage] more risk,” she said, but “unless we change the incentives in the system we’re going to continue to overbuild and over train.”

Stephan identified three major effects of the perverse incentives governing academic research: over-training, risk aversion and over-building of physical infrastructure. All three are problems in their own right but also feed back to make the situation worse.

“Economics is about incentives and cost,” Stephan explained, and both are problematic in most national funding systems. She particularly examined that of the U.S.

The Inaugural Practice and Experience in Advanced Research Computing (PEARC) conference—with the theme Sustainability, Success and Impact—stresses key objectives for those who manage, develop and use advanced research computing throughout the U.S. and the world. Organizations supporting this new HPC conference include the Advancing Research Computing on Campuses: Best Practices Workshop (ARCC), the Extreme Science and Engineering Development Environment (XSEDE), the Science Gateways Community Institute, the Campus Research Computing (CaRC) Consortium, the Advanced CyberInfrastructure Research and Education Facilitators (ACI-REF) consortium, the National Center for Supercomputing Applications’ Blue Waters project, ESnet, Open Science Grid, Compute Canada, the EGI Foundation, the Coalition for Academic Scientific Computation (CASC) and Internet2.

Over-training: A Plague of PhDs

Increasingly, Stephan argued, universities are following a “high-end shopping mall” model in which they “lease” space to researchers—the “stores.” Physical building, particularly during the funding increases of the 1990s, became a priority as universities vied to attract top-performing (read: highly funded) research faculty. One down side to this model, though, is that individual principal investigators took on so much of the risk. With about 95 percent of research faculty paying their own salaries through soft money, funding has become existential and devours increasing amounts of the average lab head’s time: One study estimated that PIs spend 42% of their professional time on grant administration and writing.

“This raises the issue of how you’re going to staff your lab,” Stephan said. While few researchers make a conscious decision to bias hiring toward some types of research workers, the economic pressures often give little choice.

The issue is stark in the decision of whether to employ graduate students, postdoctoral fellows or staff scientists to conduct lab research. Nationally, graduate students average a stipend of about $26,000 annually; in addition, they represent approximately an additional $16,000 or more for tuition and other student costs. Their hourly “pay rate,” then, can be between $19.50 and $27.50.

Postdoctoral fellows are paid more. But they also have no tuition costs and at most universities have few additional benefits. Assuming a university follows the NIH benchmark of $43,692 for a first-year postdoc, their hourly rate comes to around $17 to $18, depending on the field.

Staff scientists start at about $60,000 to $75,000, coming out to an hourly rate of about $30.00. But that doesn’t reflect their full cost, which includes much more extensive benefits than students or postdocs.

Given this incentive structure, Stephan explained, it isn’t hard to understand the relative scarcity of staff scientists. Her own study found that at least 72 percent of academic research papers had postdocs or grad students as their first author. In the NSF’s annual survey, life science PhD graduates with definite job commitments have fallen from a peak of 70% in 1994 to 58% in 2014—and most of those are going to postdoc positions, not permanent jobs.

With the scarcity of permanent positions for these postdocs to go to next, “academe has become the alternate career track” for PhDs, particularly in physics and the physical and life sciences, she said.

“Training [has become] less about the future supply and more about getting research and teaching done now,” Stephan said.

Aversion to Risk

Along with the oversupply of PhDs, the funding structure has created an atmosphere in which risk-taking is discouraged in the funding process. In an influential Proceedings of the National Academy of Science USA paper, biomedical giants Alberts, Kirscher, Tilghman and Varmus criticized biomedical research funding as overly risk averse. Researchers have perceived a similar problem in the physical sciences: Even DARPA, which once self-identified as funding risky projects, has been criticized for being over-cautious.

At the stage of grant application reviews, the common requirement for preliminary data among many reviewers tilts the field against high-risk projects. So does the use of bibliometric measures of author impact. The short-term nature of the funding cycle also discourages novelty: “It’s hard to recover from failure in three years,” Stephan said. And since the success rate for grant continuations is higher than that for new grants, the system encourages researchers to “stay in their lanes.”

“The stress on ‘translational’ outcomes” that provide immediate practical applications “also discourages risk,” she added.

Another study showed that highly novel papers tend to show pronounced payoffs at 13 years after publication but little at three years. Non-novel papers, on the other hand, pay off better at three-year cycles—but don’t improve over time.

If You Build It, They Will Not Necessarily Come

Overbuilding—the construction of unneeded university brick and mortar—came with the NIH budget doubling in the late 1990s. Universities, assuming continued growth, embarked on a “building binge” to attract top grant-attracting faculty. They borrowed to do so, partly because interest payments for debt service can be included in calculating indirect costs charged against those grants—and thus it would, presumably, “pay for itself.”

From 1988 to 2011, biomedical research floor space at the average university increased from 40,000 square feet to 90,000 square feet.

When funding declined in real dollars, unrecoverable debt and even facility mothballing followed. The annual average university debt service grew from $3.5 million in 2003 to $6.9 million in 2008. It created an economic drag on many research universities that will be hard to escape.

“All disciplines will pay for this, not just the biomedical sciences,” Stephan said.

The Way Out?

The irony, of course, is that the primary justification for government-funded research is to take risks that industry can’t.

For economists, the case for academe starts with a concept called “market failure,” Stephan explained. It’s the term used to describe the way most firms avoid overly risky projects; the difficulty of capturing financial benefits from fundamental discovery is a particular disincentive to pursue that which does not pay off in the near term.

“But the risky stuff shifts knowledge frontiers, eventually contributing to economic growth,” she said.

Excellence is not the same thing as risk-taking, Stephan took pains to add. Not all excellent research takes big risk; not all risky research is of high quality.

“I think as a country we need a portfolio,” she said. “It does not mean that there is not a substantial role for what we call ‘normal’ research.” But if we don’t change the incentive structures of our funding process—rewarding outcomes over longer time periods, creating incentives to encourage permanent rather than temporary jobs and make living on “soft money” less precarious, we won’t see the kind of innovation in which academic research was supposed to specialize.

“I’ve been working at this for too long, so I’m not wildly optimistic,” Stephan admitted.

Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center, is following a non-traditional career path for science PhDs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This