Perverse Incentives? How Economics (Mis-)shaped Academic Science

By Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center

July 12, 2017

The unintended consequences of how we fund academic research—in the U.S. and elsewhere—are strangling innovation, putting universities into debt and creating numerous PhD graduates and postdoctoral fellows who will not be able to get jobs in their chosen fields, according to economist Paula Stephan of Georgia State University.

The good news, Stephan said at the opening plenary session of the PEARC17 conference in New Orleans on July 11, is that researchers probably needn’t go back to the politicians to ask for more money. The bad news: the current system is so ingrained it’s hard to be optimistic.

“I don’t think it would take more funding to [encourage] more risk,” she said, but “unless we change the incentives in the system we’re going to continue to overbuild and over train.”

Stephan identified three major effects of the perverse incentives governing academic research: over-training, risk aversion and over-building of physical infrastructure. All three are problems in their own right but also feed back to make the situation worse.

“Economics is about incentives and cost,” Stephan explained, and both are problematic in most national funding systems. She particularly examined that of the U.S.

The Inaugural Practice and Experience in Advanced Research Computing (PEARC) conference—with the theme Sustainability, Success and Impact—stresses key objectives for those who manage, develop and use advanced research computing throughout the U.S. and the world. Organizations supporting this new HPC conference include the Advancing Research Computing on Campuses: Best Practices Workshop (ARCC), the Extreme Science and Engineering Development Environment (XSEDE), the Science Gateways Community Institute, the Campus Research Computing (CaRC) Consortium, the Advanced CyberInfrastructure Research and Education Facilitators (ACI-REF) consortium, the National Center for Supercomputing Applications’ Blue Waters project, ESnet, Open Science Grid, Compute Canada, the EGI Foundation, the Coalition for Academic Scientific Computation (CASC) and Internet2.

Over-training: A Plague of PhDs

Increasingly, Stephan argued, universities are following a “high-end shopping mall” model in which they “lease” space to researchers—the “stores.” Physical building, particularly during the funding increases of the 1990s, became a priority as universities vied to attract top-performing (read: highly funded) research faculty. One down side to this model, though, is that individual principal investigators took on so much of the risk. With about 95 percent of research faculty paying their own salaries through soft money, funding has become existential and devours increasing amounts of the average lab head’s time: One study estimated that PIs spend 42% of their professional time on grant administration and writing.

“This raises the issue of how you’re going to staff your lab,” Stephan said. While few researchers make a conscious decision to bias hiring toward some types of research workers, the economic pressures often give little choice.

The issue is stark in the decision of whether to employ graduate students, postdoctoral fellows or staff scientists to conduct lab research. Nationally, graduate students average a stipend of about $26,000 annually; in addition, they represent approximately an additional $16,000 or more for tuition and other student costs. Their hourly “pay rate,” then, can be between $19.50 and $27.50.

Postdoctoral fellows are paid more. But they also have no tuition costs and at most universities have few additional benefits. Assuming a university follows the NIH benchmark of $43,692 for a first-year postdoc, their hourly rate comes to around $17 to $18, depending on the field.

Staff scientists start at about $60,000 to $75,000, coming out to an hourly rate of about $30.00. But that doesn’t reflect their full cost, which includes much more extensive benefits than students or postdocs.

Given this incentive structure, Stephan explained, it isn’t hard to understand the relative scarcity of staff scientists. Her own study found that at least 72 percent of academic research papers had postdocs or grad students as their first author. In the NSF’s annual survey, life science PhD graduates with definite job commitments have fallen from a peak of 70% in 1994 to 58% in 2014—and most of those are going to postdoc positions, not permanent jobs.

With the scarcity of permanent positions for these postdocs to go to next, “academe has become the alternate career track” for PhDs, particularly in physics and the physical and life sciences, she said.

“Training [has become] less about the future supply and more about getting research and teaching done now,” Stephan said.

Aversion to Risk

Along with the oversupply of PhDs, the funding structure has created an atmosphere in which risk-taking is discouraged in the funding process. In an influential Proceedings of the National Academy of Science USA paper, biomedical giants Alberts, Kirscher, Tilghman and Varmus criticized biomedical research funding as overly risk averse. Researchers have perceived a similar problem in the physical sciences: Even DARPA, which once self-identified as funding risky projects, has been criticized for being over-cautious.

At the stage of grant application reviews, the common requirement for preliminary data among many reviewers tilts the field against high-risk projects. So does the use of bibliometric measures of author impact. The short-term nature of the funding cycle also discourages novelty: “It’s hard to recover from failure in three years,” Stephan said. And since the success rate for grant continuations is higher than that for new grants, the system encourages researchers to “stay in their lanes.”

“The stress on ‘translational’ outcomes” that provide immediate practical applications “also discourages risk,” she added.

Another study showed that highly novel papers tend to show pronounced payoffs at 13 years after publication but little at three years. Non-novel papers, on the other hand, pay off better at three-year cycles—but don’t improve over time.

If You Build It, They Will Not Necessarily Come

Overbuilding—the construction of unneeded university brick and mortar—came with the NIH budget doubling in the late 1990s. Universities, assuming continued growth, embarked on a “building binge” to attract top grant-attracting faculty. They borrowed to do so, partly because interest payments for debt service can be included in calculating indirect costs charged against those grants—and thus it would, presumably, “pay for itself.”

From 1988 to 2011, biomedical research floor space at the average university increased from 40,000 square feet to 90,000 square feet.

When funding declined in real dollars, unrecoverable debt and even facility mothballing followed. The annual average university debt service grew from $3.5 million in 2003 to $6.9 million in 2008. It created an economic drag on many research universities that will be hard to escape.

“All disciplines will pay for this, not just the biomedical sciences,” Stephan said.

The Way Out?

The irony, of course, is that the primary justification for government-funded research is to take risks that industry can’t.

For economists, the case for academe starts with a concept called “market failure,” Stephan explained. It’s the term used to describe the way most firms avoid overly risky projects; the difficulty of capturing financial benefits from fundamental discovery is a particular disincentive to pursue that which does not pay off in the near term.

“But the risky stuff shifts knowledge frontiers, eventually contributing to economic growth,” she said.

Excellence is not the same thing as risk-taking, Stephan took pains to add. Not all excellent research takes big risk; not all risky research is of high quality.

“I think as a country we need a portfolio,” she said. “It does not mean that there is not a substantial role for what we call ‘normal’ research.” But if we don’t change the incentive structures of our funding process—rewarding outcomes over longer time periods, creating incentives to encourage permanent rather than temporary jobs and make living on “soft money” less precarious, we won’t see the kind of innovation in which academic research was supposed to specialize.

“I’ve been working at this for too long, so I’m not wildly optimistic,” Stephan admitted.

Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center, is following a non-traditional career path for science PhDs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Penguin Computing Brings Cascade Lake-AP to OCP Form Factor

July 7, 2020

Penguin Computing, a subsidiary of SMART Global Holdings, Inc., is announcing a new Tundra server, Tundra AP, that is the first to implement the Intel Xeon Scalable 9200 series processors (codenamed Cascade Lake-AP) in t Read more…

By Tiffany Trader

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance family on Google Compute Engine. The instances are powered by t Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial research. Can you discuss key developments in recent years? Read more…

By Steve Conway, Hyperion

The Barcelona Supercomputing Center Offers a Virtual Tour of Its MareNostrum Supercomputer

July 6, 2020

With the COVID-19 pandemic continuing to threaten the world and disrupt normal operations, facility tours remain a little difficult to operate, with many supercomputing centers having shuttered facility tours for visitor Read more…

By Oliver Peckham

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance fam Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

Contributors

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This