Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

By Ken Chiacchia and Tiffany Jolley

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series and timeliness in general, according to Paul Morin, director of the Polar Geospatial Center at the University of Minnesota.

In the second plenary session of the PEARC conference in New Orleans on July 12, Morin described how access to the DigitalGlobe satellite constellation, the NSF XSEDE network of supercomputing centers and the Blue Waters supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign have enabled his group to map Antarctica—an area of 5.4 million square miles, compared with the 3.7 million square miles of the “lower 48” United States—at 1-meter resolution in two years. Nine months later, then-president Barack Obama announced a joint White House initiative involving the NSF and the National Geospatial Intelligence Agency (NGIA) in which Morin’s group mapped a similar area in the Arctic including the entire state of Alaska in two years.

“If I wrote this story in a single proposal I wouldn’t have been able to write [any proposals] afterward,” Morin said. “It’s that absurd.” But the leaps in technology have made what used to be multi-decadal mapping projects—when they could be done at all—into annual events, with even more frequent updates soon to come.

The inaugural Practice and Experience in Advanced Research Computing (PEARC) conference—with the theme Sustainability, Success and Impact—stresses key objectives for those who manage, develop and use advanced research computing throughout the U.S. and the world. Organizations supporting this new HPC conference include the Advancing Research Computing on Campuses: Best Practices Workshop (ARCC), the Extreme Science and Engineering Development Environment (XSEDE), the Science Gateways Community Institute, the Campus Research Computing (CaRC) Consortium, the Advanced CyberInfrastructure Research and Education Facilitators (ACI-REF) consortium, the National Center for Supercomputing Applications’ Blue Waters project, ESnet, Open Science Grid, Compute Canada, the EGI Foundation, the Coalition for Academic Scientific Computation (CASC) and Internet2.

Follow the Poop

One project made possible with the DigitalGlobe constellation—a set of Hubble-like multispectral orbiting telescopes “pointed the other way”—was a University of Minnesota census of emperor penguin populations in Antarctica.

“What’s the first thing you do if you get access to a bunch of sub-meter-resolution [orbital telescopes covering] Antarctica?” Morin asked. “You point them at penguins.”

Thanks in part to a lack of predators the birds over-winter on the ice, huddling in colonies for warmth. Historically these colonies were discovered by accident: Morin’s project enabled the first continent-wide survey to find and estimate the population size of all the colonies.

The researchers realized that they had a relatively easy way to spot the colonies in the DigitalGlobe imagery: Because the penguins eat beta-carotene-rich krill, their excrement stains the ice red.

“You can identify their location by looking for poo,” Morin said. The project enabled the first complete population count of emperor penguins: 595,000 birds, +14%

“We started to realize we were onto something,” he added. His group began to wonder if they could leverage the sub-meter-resolution, multispectral, stereo view of the constellation’s WorldView I, II and III satellites to derive the topography of the Antarctic, and later the Arctic. One challenge, he knew, would be finding the computational power to extract topographic data from the stereo images in a reasonable amount of time. He found his answer at the NSF and the NGIA.

“We proposed to a science agency and a combat support agency that we were going to map the topography of 30 degrees of the globe in 24 months.”

Blue Waters on the Ice

Morin and his collaborators found themselves in the middle of a seismic shift in topographic technology.

“Eight years ago, people were doing [this] from the ground,” with a combination of land-based surveys and accurate but expensive LIDAR mapping from aircraft, he said. These methods made sense in places where population and industrial density made the cost worthwhile. But it had left the Antarctic and Arctic largely unmapped.

Deriving topographic information from the photographs posed a computational problem well beyond the capabilities of a campus cluster. The group did initial computations at the Ohio Supercomputer Center, but needed to expand for the final data analysis. In 2014 XSEDE Project Director John Towns offered XSEDE’s help in tackling the massive scale of data that would come from an array of satellites collecting topographic images. From 2014 to 2015, Morin used XSEDE resources, most notably Gordon at San Diego Supercomputer Center and XSEDE’s Extended Collaborative Support Service to carry out his initial computations. XSEDE then helped his group acquire an allocation on Blue Waters, an NSF-funded Cray Inc. system at Illinois and NCSA with 49,000 CPUs and a peak performance of 13.3 petaflops.

Collecting the equivalent area of California daily, a now-expanded group of subject experts made use of the polar-orbiting satellites and Blue Waters to derive elevation data. They completed a higher-resolution map of Alaska—the earlier version of which had taken the U.S. Geological Survey 50 years—in a year. While the initial images are licensed for U.S. government use only, the group was able to release the resulting topographic data for public use.

Mapping Change

Thanks to the one-meter resolution of their initial analysis, the group quickly found they could identify many man-made structures on the surface. They could also spot vegetation changes such as clearcutting. They could even quantify vegetation regrowth after replanting.

“We’re watching individual trees growing here.”

Another set of images he showed in his PEARC17 presentation were before-and-after topographic maps of Nuugaatsiaq, Greenland, which was devastated by a tsunami last month. The Greenland government is using the images, which show both human structures and the landslide that caused the 10-meter tsunami, to plan recovery efforts.

The activity of the regions’ ice sheets was a striking example of the technology’s capabilities.

“Ice is a mineral that flows,” Morin said, and so the new topographic data offer much more frequent information about ice-sheet changes driven by climate change than previously available. “We not only have an image of the ice but we know exactly how high it is.”

Morin also showed an image of the Larsen Ice Shelf revealing a crack that had appeared in the glacier. The real news, though, was that the crack—which created an iceberg the size of the big island of Hawaii—was less than 24 hours old. It had appeared sometime after midnight on July 12.

“We [now] have better topography for Siberia than we have for Montana,” he noted.

New Directions

While the large, high-resolution satellites have already transformed the field, innovations are already coming that could create another shift, Morin said.

“This is not your father’s topography,” he noted. “Everything has changed; everything is time sensitive; everything is on demand.” In an interview later that morning, he added, “XSEDE, Blue Waters and NSF have changed how earth science happens now.”

One advance won’t require new technology: just a little more time. While the current topographic dataset is at 1-meter resolution, the data can go tighter with more computation. The satellite images actually have a 30-centimeter resolution, which would allow for the project to shift from imaging objects the size of automobiles to those the size of a coffee table.

At that point, he said, “instead of [just the] presence or absence of trees we’ll be able to tell what species of tree. It doesn’t take recollection of imagery; it just takes reprocessing.”

The new, massive constellation of CubeSats such as the Planet company’s toaster-sized Dove satellites now being launched promises an even more disruptive advance. A swarm of these satellites will provide much more frequent coverage of the entire Earth’s surface than possible with the large telescopes.

Click to expand

“The quality isn’t as good, but right now we’re talking about coverage,” Morin said. His group’s work has taken advantage of a system that allows mapping of a major portion of the Earth in a year. “What happens when we have monthly coverage?”

Feature image caption: Buildings in Juneau, Alaska, as shown in the University of Minnesota topographic survey of the Arctic region. The airport runway can be seen at the bottom.

Authors

Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center

Tiffany Jolley Content Producer, National Center for Supercomputing Applications

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire