Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

By Ken Chiacchia and Tiffany Jolley

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series and timeliness in general, according to Paul Morin, director of the Polar Geospatial Center at the University of Minnesota.

In the second plenary session of the PEARC conference in New Orleans on July 12, Morin described how access to the DigitalGlobe satellite constellation, the NSF XSEDE network of supercomputing centers and the Blue Waters supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign have enabled his group to map Antarctica—an area of 5.4 million square miles, compared with the 3.7 million square miles of the “lower 48” United States—at 1-meter resolution in two years. Nine months later, then-president Barack Obama announced a joint White House initiative involving the NSF and the National Geospatial Intelligence Agency (NGIA) in which Morin’s group mapped a similar area in the Arctic including the entire state of Alaska in two years.

“If I wrote this story in a single proposal I wouldn’t have been able to write [any proposals] afterward,” Morin said. “It’s that absurd.” But the leaps in technology have made what used to be multi-decadal mapping projects—when they could be done at all—into annual events, with even more frequent updates soon to come.

The inaugural Practice and Experience in Advanced Research Computing (PEARC) conference—with the theme Sustainability, Success and Impact—stresses key objectives for those who manage, develop and use advanced research computing throughout the U.S. and the world. Organizations supporting this new HPC conference include the Advancing Research Computing on Campuses: Best Practices Workshop (ARCC), the Extreme Science and Engineering Development Environment (XSEDE), the Science Gateways Community Institute, the Campus Research Computing (CaRC) Consortium, the Advanced CyberInfrastructure Research and Education Facilitators (ACI-REF) consortium, the National Center for Supercomputing Applications’ Blue Waters project, ESnet, Open Science Grid, Compute Canada, the EGI Foundation, the Coalition for Academic Scientific Computation (CASC) and Internet2.

Follow the Poop

One project made possible with the DigitalGlobe constellation—a set of Hubble-like multispectral orbiting telescopes “pointed the other way”—was a University of Minnesota census of emperor penguin populations in Antarctica.

“What’s the first thing you do if you get access to a bunch of sub-meter-resolution [orbital telescopes covering] Antarctica?” Morin asked. “You point them at penguins.”

Thanks in part to a lack of predators the birds over-winter on the ice, huddling in colonies for warmth. Historically these colonies were discovered by accident: Morin’s project enabled the first continent-wide survey to find and estimate the population size of all the colonies.

The researchers realized that they had a relatively easy way to spot the colonies in the DigitalGlobe imagery: Because the penguins eat beta-carotene-rich krill, their excrement stains the ice red.

“You can identify their location by looking for poo,” Morin said. The project enabled the first complete population count of emperor penguins: 595,000 birds, +14%

“We started to realize we were onto something,” he added. His group began to wonder if they could leverage the sub-meter-resolution, multispectral, stereo view of the constellation’s WorldView I, II and III satellites to derive the topography of the Antarctic, and later the Arctic. One challenge, he knew, would be finding the computational power to extract topographic data from the stereo images in a reasonable amount of time. He found his answer at the NSF and the NGIA.

“We proposed to a science agency and a combat support agency that we were going to map the topography of 30 degrees of the globe in 24 months.”

Blue Waters on the Ice

Morin and his collaborators found themselves in the middle of a seismic shift in topographic technology.

“Eight years ago, people were doing [this] from the ground,” with a combination of land-based surveys and accurate but expensive LIDAR mapping from aircraft, he said. These methods made sense in places where population and industrial density made the cost worthwhile. But it had left the Antarctic and Arctic largely unmapped.

Deriving topographic information from the photographs posed a computational problem well beyond the capabilities of a campus cluster. The group did initial computations at the Ohio Supercomputer Center, but needed to expand for the final data analysis. In 2014 XSEDE Project Director John Towns offered XSEDE’s help in tackling the massive scale of data that would come from an array of satellites collecting topographic images. From 2014 to 2015, Morin used XSEDE resources, most notably Gordon at San Diego Supercomputer Center and XSEDE’s Extended Collaborative Support Service to carry out his initial computations. XSEDE then helped his group acquire an allocation on Blue Waters, an NSF-funded Cray Inc. system at Illinois and NCSA with 49,000 CPUs and a peak performance of 13.3 petaflops.

Collecting the equivalent area of California daily, a now-expanded group of subject experts made use of the polar-orbiting satellites and Blue Waters to derive elevation data. They completed a higher-resolution map of Alaska—the earlier version of which had taken the U.S. Geological Survey 50 years—in a year. While the initial images are licensed for U.S. government use only, the group was able to release the resulting topographic data for public use.

Mapping Change

Thanks to the one-meter resolution of their initial analysis, the group quickly found they could identify many man-made structures on the surface. They could also spot vegetation changes such as clearcutting. They could even quantify vegetation regrowth after replanting.

“We’re watching individual trees growing here.”

Another set of images he showed in his PEARC17 presentation were before-and-after topographic maps of Nuugaatsiaq, Greenland, which was devastated by a tsunami last month. The Greenland government is using the images, which show both human structures and the landslide that caused the 10-meter tsunami, to plan recovery efforts.

The activity of the regions’ ice sheets was a striking example of the technology’s capabilities.

“Ice is a mineral that flows,” Morin said, and so the new topographic data offer much more frequent information about ice-sheet changes driven by climate change than previously available. “We not only have an image of the ice but we know exactly how high it is.”

Morin also showed an image of the Larsen Ice Shelf revealing a crack that had appeared in the glacier. The real news, though, was that the crack—which created an iceberg the size of the big island of Hawaii—was less than 24 hours old. It had appeared sometime after midnight on July 12.

“We [now] have better topography for Siberia than we have for Montana,” he noted.

New Directions

While the large, high-resolution satellites have already transformed the field, innovations are already coming that could create another shift, Morin said.

“This is not your father’s topography,” he noted. “Everything has changed; everything is time sensitive; everything is on demand.” In an interview later that morning, he added, “XSEDE, Blue Waters and NSF have changed how earth science happens now.”

One advance won’t require new technology: just a little more time. While the current topographic dataset is at 1-meter resolution, the data can go tighter with more computation. The satellite images actually have a 30-centimeter resolution, which would allow for the project to shift from imaging objects the size of automobiles to those the size of a coffee table.

At that point, he said, “instead of [just the] presence or absence of trees we’ll be able to tell what species of tree. It doesn’t take recollection of imagery; it just takes reprocessing.”

The new, massive constellation of CubeSats such as the Planet company’s toaster-sized Dove satellites now being launched promises an even more disruptive advance. A swarm of these satellites will provide much more frequent coverage of the entire Earth’s surface than possible with the large telescopes.

Click to expand

“The quality isn’t as good, but right now we’re talking about coverage,” Morin said. His group’s work has taken advantage of a system that allows mapping of a major portion of the Earth in a year. “What happens when we have monthly coverage?”

Feature image caption: Buildings in Juneau, Alaska, as shown in the University of Minnesota topographic survey of the Arctic region. The airport runway can be seen at the bottom.

Authors

Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center

Tiffany Jolley Content Producer, National Center for Supercomputing Applications

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather and climate models struggle to run efficiently in their HPC en Read more…

By Oliver Peckham

Microsoft, Nvidia Launch Cloud HPC Service

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an InfiniBand network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather an Read more…

By Oliver Peckham

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This