Fine-Tuning Severe Hail Forecasting with Machine Learning

By Sean Thielen

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s good reason for that instinctive reaction. Just consider that a massive hail storm that battered the Denver metro area with golf ball-size hail on May 8, 2017, is expected to result in more than 150,000 car insurance claims and an estimated $1.4 billion in damage to property in and around Denver. The fact is that even in 2017, emergency responders, airports and everyone else going about their business must gamble with forecast uncertainties about hail. So how great would it be if you could get accurate warnings highlighting the path of severe hail storms, along with expected hail size, 1–3 hours before a storm passes through?

If the Severe Hail Analysis and Prediction (SHARP) project, which is funded through a grant from the National Science Foundation (NSF), accomplishes its goal of developing an accurate “warn-on-forecast” model for severe hail storms, this could happen in the next five to 10 years. Of course, there is a lot of scientific work to be done in the meantime, along with a need for significantly more computing power.

A two-pronged approach to hail research

The Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma (OU) undertook the SHARP project in 2014 after hypothesizing that hail representation in numerical weather prediction (NWP) models, which mathematically model atmospheric physics to predict storms, could be improved by assimilating data from a host of data sources, and that advanced data-mining techniques could improve predictions of hail size and coverage.

Nathan Snook and Amy McGovern, two of the co-principal investigators on the project, say that CAPS pursues its hail research on two fronts. On one front, large amounts of data from various weather observing systems are ingested into weather models to create very high resolution forecasts. The other uses machine learning to sift through weather model output from CAPS and the National Center for Atmospheric Research to discover new knowledge hidden in large data sets and perform post-model correction calibrations to produce more skillful forecasts. For nearly four years, these projects have relied on the Texas Advanced Computer Center’s (TACC) Stampede system, an important part of NSF’s portfolio for advanced computing infrastructure that enables cutting-edge foundational research for computational and data-intensive science and engineering.

The high-resolution modeling is currently post-event and area specific, while the machine learning analysis is done in real time on a nationwide basis. The reason for the difference comes down to workload sizes. “For the high-resolution work, we use data from interesting historical cases to try to accurately predict the size and scope of hail that passes through a specific area,” explains Snook, a CAPS research scientist who focuses on the warn-on-forecast work. “We deal with 1 to 5 TB of data for each case study that we run, and run different experiments on different days, so our computing demands are enormous and the current available resources simply aren’t powerful enough for real-time analysis.”

McGovern, an associate professor of computer science and adjunct associate professor in the School of Meteorology at OU, says that although the machine learning algorithms are computationally intensive to train, it’s no problem to run them in real time because they are at a much coarser resolution than the data sets that Snook’s team uses (3km vs. 500m) and require fewer resources. “Our resource challenges are mainly around having enough storage and bandwidth to transfer all of the data we need on a daily basis…the data sets come from all over the U.S. and they are quite large, so there are a lot of I/O challenges,” explains McGovern.

Both research efforts rely heavily on data from the NOAA Hazardous Weather Testbed (HWT) to support their experiments. “The HWT gathers a wealth of numerical forecast data by collecting forecasts from various research institutions for about five to six weeks every spring. We use that data for a lot of our high-resolution experiments as well for our machine learning. It’s ideal for the machine learning work because it’s a big data set that is relatively stable from year to year,” says Snook.

Chipping away at high-resolution, real time forecasts

CAPS primarily uses two models for its high-resolution research, including the Weather and Research Forecasting (WRF) model, a widely used mesoscale numerical weather prediction system, and in-house model called the Advanced Regional Prediction System (ARPS). Snook says ARPS is also tuned for mesoscale weather analysis and is quite effective at efficiently assimilating radar and surface observations from a lot of different sources. In fact, to achieve greater accuracy in its warn-on-forecast modeling research, the CAPS team uses models with grid points spaced every 500m, as opposed to the 3km spacing typical in many operational high-resolution models. CAPS made the six-fold increase to better support probabilistic 1-3 hour forecasts of the size of hail and the specific counties and cities it will impact. Snook notes that the National Weather Service is moving toward the use of mesoscale forecasts in severe weather operations and that his team’s progress so far has been promising. In several case studies, their high-resolution forecasts have skillfully predicted the path of individual hailstorms up to three hours in advance—one such case is shown in figure 1.

Figure 1: A comparison of radar-indicated hail versus a 0–90 minute CAPS hail forecast for a May 20, 2013 storm in Oklahoma (inset photo shows image of actual hail from the storm).

While the CAPS team is wrapping up the first phase of its research, Snook and his team have identified areas where they need to further improve their model, and are submitting a new proposal to fund additional work. “As you can imagine, we’re nowhere near the computing power needed to track every hailstone and raindrop, so we’re still dealing with a lot of uncertainty in any storm… We have to make bulk estimates about the types of particles that exist in a given model volume, so when you’re talking about simulating something like an individual thunderstorm, it’s easy to introduce small errors which can then quickly grow into large errors throughout the model domain,” explains Snook. “Our new focus is on improving the microphysics within the model—that is, the parameters the model uses to define precipitation, such as cloud water, hail, snow or rain. If we are successful at that, we could see a large improvement in the quality of hail forecasts.”

Going deeper into forecast data with machine learning

Unlike with the current high-resolution research, CAPS runs the machine learning prediction portion of the project using near real-time daily forecast data from the various groups participating in the HWT. CAPS compares daily realtime forecast data against historical HWT data sets using a variety of algorithms and techniques to flush out important hidden data in forecasted storms nationwide. “Although raw forecasts provide some value, they include a lot of additional information that’s not immediately accessible. Machine learning methods are better at predicting the probability and potential size, distribution and severity of hail 24 to 48 hours in advance,” explains McGovern. “We are trying to improve the predictions from what SPC and the current models do.”

Figure 2 is a good illustration for how the machine learning models have improved the prediction of events for a specific case study. The figure, which highlights storms reported in the southern plains on May 27, 2015, compares the predictions using three different methods:

• Machine learning (left)

• A single parameter from the models, currently used to estimate hail (middle)

• A state-of-the-art algorithm currently used to estimate hail size (right)

The green circles show a 25 mile or 40 km radius around hail reports from that day, and the pink colors show the probability of severe hail, as predicted by each model. Although the updraft helicity model (middle) has the locations generally right, the probabilities are quite low. HAILCAST (right) overpredicts hail in the southeast while missing the main event in Oklahoma, Kansas, and Texas. The machine learning model (left) has the highest probabilities of hail exactly where it occurred. In general, this is a good example for how machine learning is now outperforming current prediction methods.

Currently, McGovern’s team is focusing on two aspects of hail forecasts: “First, we are working to get the machine learning methods into production in the Storm Prediction Center to support some high-resolution models they will be releasing. Second, we are improving the predictions by making use of the full 3D data available from the models,” explains McGovern.

Figure 2: A case study that shows the superior accuracy of the machine learning methods (left) compared to other methods.

A welcome resource boost

Snook says that the machine learning and high resolution research have generated close to 100TB of data each that they are sifting through, so access to ample computing resources is essential to ongoing progress. That’s why Snook and McGovern are looking forward to being able to utilize TACC’s Stampede2 system which, in May, began supporting early users and will be fully deployed to the research community later this summer. The new system from Dell includes 4,200 Intel Xeon Phi processors and 1,736 Intel Xeon processors as well as Intel Omni-Path Architecture Fabric, a 10GigE/40GigE management network, and more than 600 TB of memory. It is expected to double the performance of the previous Stampede system with a peak performance of up to 18 petaflops.

McGovern’s team also runs some of the machine learning work locally on the Schooner system at the OU Supercomputing Center for Education and Research (OSCER). Schooner, which includes a combination of Dell PowerEdge R430 and R730 nodes that are based on the Intel Xeon processor E5-2650 and E5-2670 product families as well as more than 450TB of storage, has a peak performance of 346.9 teraflops. “Schooner is a great resource for us because they allow ‘condo nodes’ so we can avoid lines and we also have our own disk that doesn’t get wiped every day,” says McGovern. “It’s also nice being able to collaborate directly with the HPC experts at OSCER.”

Between the two systems, Snook and McGovern expect to continue making steady progress on their research. That doesn’t mean real-time, high-resolution forecasts are right around the corner, however. “I hope that in five to 10 years, the warn-on-forecast approach becomes a reality, but it’s going to take a lot more research and computing power before we get there,” says Snook.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This