NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

By John Russell

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research. The ambitious plan – Cognitive Hardware and Software Ecosystem, Community Infrastructure (CHASE-CI) – is intended to leverage the high-speed Pacific Research Platform (PRP) and put fast GPU appliances into the hands of researchers to tackle machine learning hardware, software, and architecture issues.

Given the abrupt rise of machine learning and its distinct needs versus traditional FLOPS-dominated HPC, the CHASE-CI effort seems a natural next step in learning how to harness PRP’s high bandwidth for use with big data projects and machine learning. Perhaps not coincidentally Smarr is also principal investigator for PRP. As described in the NSF abstract, CHASE-CI “will build a cloud of hundreds of affordable Graphics Processing Units (GPUs), networked together with a variety of neural network machines to facilitate development of next generation cognitive computing.”

Those are big goals. Last week, Smarr and co-PI Thomas DeFanti spoke with HPCwire about the CHASE-CI project. It has many facets. Hardware, including von Neumann (vN) and non von Neumann (NvN) architectures, software frameworks (e.g., Caffe and TensorFlow), six specific algorithm families (details near the end of the article), and cost containment are all key target areas. In building out PRP, the effort leveraged existing optical networks such as GLIF by building termination devices based on PCs and providing them to research scientists. The new device — dubbed FIONA (Flexible I/O Network Appliances) – was developed by PRP co-PI Philip Papadopoulos and is critical to the new CHASE-CI effort. A little background on PRP may be helpful.

Larry Smarr, director, Calit2

As explained by Smarr, the basic PRP idea was to experiment with a cyberinfrastructure that was appropriate for a broad set of applications using big data that aren’t appropriate for the commodity internet because of the size of the of the datasets. To handle the high speed bandwidth, you need a big bucket at the end of the fiber notes Smarr. FIONAs filled the bill; the devices are stuffed with high performance, high capacity SSDs and high speed NICs but based on the humble and less expensive PC.

“They could take the high data rate without TCP backing up and thereby lowering the overall bandwidth, which traditionally has been a problem if you try to go directly to spinning disk,” says Smarr. Currently, there are on the order of 40 or 50 of these FIONAs deployed across the West Coast. Although 100 gigabit throughput is possible via the fiber, most researchers are getting 10 gigabit, still a big improvement.

DOE tests the PRP performance regularly using the visualization tool MaDDash (Monitoring and Debugging Dashboard). “There are test transfers of 10 gigabytes of data, four times a day, among 25 organizations, so that’s roughly about 300 transfers four times a day. The reason why we picked that number, 10 gigabytes, was because that’s the amount of data you need to get TCP up to full speed,” says Smarr.

Thomas DeFanti, co-PI, CHASE-CI

Networks are currently testing out at 5, 6, 7, 8 and 9 gigabits per second, which is nearly full utilization. “Some of them really nail it at 9.9 gigabits per second. If you go to 40 gigabit networks that we have, we are getting 13 and 14 gigabits per second and that’s because of the [constrained] software we are using. If we go to a different software, which is not what scientists routinely use [except] the high energy physics people, then we can get 30 or 40 or 100 gigabits per second – that’s where we max out with the PC architecture and the disk drives on those high end units,” explains DeFanti.

The PRP has proven to be very successful, say Smarr and DeFanti. PRP v1, basically the network of FIONAs, is complete. PRP v2 is in the works. The latter is intended to investigate advanced software concepts such as software defined networking and security and not intended to replace PRP v1. Now, Smarr wants to soup up FIONAs with FPGAs, hook them into the PRP, and tackle machine learning. And certainly hardware is just a portion of the machine learning challenge being addressed.

Data showing increase in PRP performance over time.

Like PRP before it, CHASE-CI is a response to an NSF call for community computer science infrastructure. Unlike PRP, which is focused on applications (e.g. geoscience, bioscience) and whose architecture was largely defined by guidance from domain scientists, CHASE-CI is being driven by needs of computer scientists trying to support big data and machine learning.

The full principal investigator team is an experienced and accomplished group including: Smarr, (Principal Investigator), Calit2; Tajana Rosing (Co-Principal Investigator), Professor, CSE Department, UCSD; Ilkay Altintas (Co-Principal Investigator), Chief Data Science Officer, San Diego Supercomputer Center; DeFanti (Co-Principal Investigator), Full Research Scientist at the UCSD Qualcomm Institute, a division of Calit2;  and Kenneth Kreutz-Delgado (Co-Principal Investigator), Professor, ECE Department, UCSD.

“What they didn’t ask for [in the PRP grant] was what computer scientists need to support big data and machine learning. So we went back to the campuses and found the computers scientists, faculty and staff that were working on machine learning and ended up with 30 of them that wrote up their research to put into this proposal,” says Smarr. “We asked what was bottlenecking the work and [they responded] it was a lack of access to GPUs to do the compute intensive aspects of machine learning like training data sets on big neural nets.”

Zeroing in on GPUs, particularly GPUs that emphasize lower precision, is perhaps predictable.

“[In traditional] HPC you need 64-bit and error correction and all of that kind of stuff which is provided very nicely by Nvidia’s Tesla line, for instance, but actually because of the noise that is inherent in the data in most machine learning applications it turns out that single precision 32-bit is just fine and that’s much less expensive than the double precision,” says Smarr. For this reason, the project is focusing on less expensive “gaming GPUs” which fit fine into the slots on the FIONAs since they are PCs.

The NSF proposal first called for putting ten GPUs into each FIONA. “But we decided eight is probably optimal, eight of these front line game GPUs and we are deploying 32 of those FIONAs in this new grant across PRP to these researchers, and because they are all connected at 10 gigabits/s we can essentially treat them as a cloud,” says Smarr. There are ten campuses initially participating: UC San Diego, UC Berkeley, UC Irvine, UC Riverside, UC Santa Cruz, UC Merced, Sand Diego State University, Caltech, Stanford, and Montana State University. [A brief summary of researchers and their intended focus by campus is at the end of the article (taken from the grant proposal).]

As shown in the cost comparison below, the premium for high end GPUs such as the Nvidia P100 is dramatic. The CHASE-CI plan is to stick with commodity gaming GPUs, like the Nvidia 1080, since they are used in large volumes which keeps the prices down and the improvements coming. Nevertheless Smarr and DeFanti emphasize they are vendor agnostic and that other vendors have expressed interest in the program.

“Every year Nvidia comes out with a new set of devices and then halfway way through the year they come out with an accelerated version so in some sense you are on a six month cycle. The game cards are around $600 and every year the [cost performance] gets better,” says DeFanti. “We buy what’s available, build, test, and benchmark and then we wait for the next round. [Notably], people in the community do have different needs – some need more memory, some would rather have twice as many $250 GPUs because they are really fast and just have less memory. So it is really kind of custom and there’s some negotiation with users, but they all fit in the same chassis.”

DeFanti argues the practice of simulating networks on CPUs has slowed machine learning’s growth. “Machine learning involves looking at gigabytes of data, millions of pictures, and basically doing that is a brute force calculation that works fine in 32 bit, nobody uses 64 bit. You chew on these things literally for a week even on a GPU, which is much faster than a CPU for these kind of these things. That’s a reason why this field was sort of sluggish just using simulators; it took too much time on desktop CPUs. The first phase of this revolution is getting everybody off simulators.”

That said, getting high performance GPUs into the hands of researchers and students is only half of the machine learning story. Training is hard and compute-intensive and can take weeks-to-months depending upon the problem. But once a network is trained, the computer power required for the inference engine is considerably less. Power consumption becomes the challenge particularly because these trained networks are expected to be widely deployed on mobile platforms.

Here, CHASE-CI is examining a wide range of device types and architectures. Calit2, for example, has been working with IBM’s neuromorphic True North chip for a couple of years. It also had a strong role in helping KnuEdge develop its DSP-based neural net chip. (KnuEdge, of course, was founded by former NASA administrator Daniel Goldin.) FPGAs also show promise.

Says Smarr, “They have got to be very energy efficient. You have this whole new generation of largely non von Neumann architectures that are capable of executing these machine learning algorithms on say streams of video data, radar data, LIDAR data, things like that, that make decisions in real time like approval on credit cards. We are building up a set of these different architectures – von Neumann and non von Neumann – and making those available to these 30 machine learning experts.”

CHASE-CI is also digging into the needed software ecosystem to support machine learning. The grant states “representative algorithms from each of the following six families will be selected to form a standardized core suite of ‘component algorithms’ that have been tuned for optimal performance on the component coprocessors.” Here they are:

  • Deep Neural Network (DNN) and Recurrent Neural Network (RNN) algorithms, including layered networks having fully-connected and convolutional layers (CNNs), variational autoencoders (VAEs), and generalized adversarial networks (GANs). Training will be done using, modern approaches to backpropagation, stochastic sampling, bootstrap sampling, and restricted (and unrestricted) Boltzmann ML. NNs provide powerful classification and detection performance and can automatically extract a hierarchy of features.
  • Reinforcement Learning (RL) algorithms and related approximate Markov decision process (MDP) algorithms. RL and inverse-RL algorithms have critical applications in areas of dynamic decision-making, robotics and human/robotic transfer learning.
  • Variational Autoencoder (VAE) and Markov Chain Monte Carlo (MCMC) stochastic sampling algorithms supporting the training of generative models and metrics for evaluating the quality of generative model algorithms. Stochastic sampling algorithms are appropriate for training generative models on analog and digital spiking neurons. Novel metrics are appropriate.
  • Support Vector Machine (SVM) SVMs can perform an inner product and thresholding in a high-dimensional feature space via use of the “kernel trick”.
  • Sparse Signal Processing (SSP) algorithms for sparse signal processing and compressive sensing, including Sparse Baysian Learning (SBL). Algorithms which exploit source sparsity, possibly using learned over-complete dictionaries, are very important in domains such as medical image processing and brain-computing interfacing.
  • Latent Variable (LVA) Algorithms for source separation algorithms, such as PCA, ICA, and IVA. LV models typically assume that a solution exists in some latent variable sparse within which the components are statistically independent. This class of algorithms includes factor analysis (FA) and non-negative matrix factorization (NMF) algorithms.

Despite such ambitious hardware and software goals, Smarr suggests early results from CHASE-CI should be available sometime in the fall. Don’t get the wrong idea, he cautions. CHASE-CI is a research project for computer science not a production platform.

“We are not trying to be a big production site or anything else. But we are trying to really explore, as this field develops, not just the hardware platforms we’ve talked about but the software and algorithm issues. There’s a whole bunch of different modes of machine learning and statistical analysis that we are trying to match between the algorithms and the architectures, both von Neumann and non von Neumann.

“For 30 years I have been sort of collecting architectures and mapping a wide swath of algorithms on them to port applications. Here we are doing it again but now for machine learning.”

Sample List of CHASE-CI Researchers and Area of Work*

  • UC San Diego: Ravi Ramamoorthi (ML for processing light field imagery), Manmohan Chandraker (3D scene reconstruction), Arun Kumar (deep learning for database systems), Rajesh Gupta (accelerator-centric SOCs), Gary Cottrell (comp. cognitive neuroscience & computer vision), Nuno Vasconcelos (computer vision & ML), Todd Hylton (contextual robotics), Jurgen Schulze (VR), Ken Kreutz-Delgado (ML and NvN), Larry Smarr (ML and microbiome), Tajana Rosing (energy efficiency of running MLs on NvNs), Falko Kuester (ML on NvNs in drones).
  • UC Berkeley: James Demmel (CA algorithms), Trevor Darrell (ML libraries)
  • UC Irvine: Padhraic Smyth (ML for biomedicine and climate science), Jeffrey Krichmar 
(computational neuroscience), Nikkil Dutt (FPGAs), Anima Anandkumar (ML)
  • UC Riverside: Walid Najjar (FPGAs), Amit Roy-Chowdhury (image and video analysis)
  • UC Santa Cruz: Dimitris Achlioptas (linear layers and random bipartite graphs), Lise Getoor (large-scale graph processing), Ramakrishna Akella (multi-modal prediction and retrieval), Shawfeng Dong (Bayesian deep learning and CNN models in astronomy)
  • UC Merced: Yang Quan Chen (agricultural drones)
  • San Diego State: Baris Aksanli (adaptive learning for historical data)
  • Caltech: Yisong Yue (scalable deep learning methods for complex prediction settings)
  • Stanford: Anshul Kundaje (ML & genetics), Ron Dror (structure-based drug design using ML)
  • Montana State: John Sheppard (ML and probablistic methods to solve large systems problems)

*  Excerpted from the CHASE-CI grant proposal

Images courtesy of Larry Smarr, Calit2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This