NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

By John Russell

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research. The ambitious plan – Cognitive Hardware and Software Ecosystem, Community Infrastructure (CHASE-CI) – is intended to leverage the high-speed Pacific Research Platform (PRP) and put fast GPU appliances into the hands of researchers to tackle machine learning hardware, software, and architecture issues.

Given the abrupt rise of machine learning and its distinct needs versus traditional FLOPS-dominated HPC, the CHASE-CI effort seems a natural next step in learning how to harness PRP’s high bandwidth for use with big data projects and machine learning. Perhaps not coincidentally Smarr is also principal investigator for PRP. As described in the NSF abstract, CHASE-CI “will build a cloud of hundreds of affordable Graphics Processing Units (GPUs), networked together with a variety of neural network machines to facilitate development of next generation cognitive computing.”

Those are big goals. Last week, Smarr and co-PI Thomas DeFanti spoke with HPCwire about the CHASE-CI project. It has many facets. Hardware, including von Neumann (vN) and non von Neumann (NvN) architectures, software frameworks (e.g., Caffe and TensorFlow), six specific algorithm families (details near the end of the article), and cost containment are all key target areas. In building out PRP, the effort leveraged existing optical networks such as GLIF by building termination devices based on PCs and providing them to research scientists. The new device — dubbed FIONA (Flexible I/O Network Appliances) – was developed by PRP co-PI Philip Papadopoulos and is critical to the new CHASE-CI effort. A little background on PRP may be helpful.

Larry Smarr, director, Calit2

As explained by Smarr, the basic PRP idea was to experiment with a cyberinfrastructure that was appropriate for a broad set of applications using big data that aren’t appropriate for the commodity internet because of the size of the of the datasets. To handle the high speed bandwidth, you need a big bucket at the end of the fiber notes Smarr. FIONAs filled the bill; the devices are stuffed with high performance, high capacity SSDs and high speed NICs but based on the humble and less expensive PC.

“They could take the high data rate without TCP backing up and thereby lowering the overall bandwidth, which traditionally has been a problem if you try to go directly to spinning disk,” says Smarr. Currently, there are on the order of 40 or 50 of these FIONAs deployed across the West Coast. Although 100 gigabit throughput is possible via the fiber, most researchers are getting 10 gigabit, still a big improvement.

DOE tests the PRP performance regularly using the visualization tool MaDDash (Monitoring and Debugging Dashboard). “There are test transfers of 10 gigabytes of data, four times a day, among 25 organizations, so that’s roughly about 300 transfers four times a day. The reason why we picked that number, 10 gigabytes, was because that’s the amount of data you need to get TCP up to full speed,” says Smarr.

Thomas DeFanti, co-PI, CHASE-CI

Networks are currently testing out at 5, 6, 7, 8 and 9 gigabits per second, which is nearly full utilization. “Some of them really nail it at 9.9 gigabits per second. If you go to 40 gigabit networks that we have, we are getting 13 and 14 gigabits per second and that’s because of the [constrained] software we are using. If we go to a different software, which is not what scientists routinely use [except] the high energy physics people, then we can get 30 or 40 or 100 gigabits per second – that’s where we max out with the PC architecture and the disk drives on those high end units,” explains DeFanti.

The PRP has proven to be very successful, say Smarr and DeFanti. PRP v1, basically the network of FIONAs, is complete. PRP v2 is in the works. The latter is intended to investigate advanced software concepts such as software defined networking and security and not intended to replace PRP v1. Now, Smarr wants to soup up FIONAs with FPGAs, hook them into the PRP, and tackle machine learning. And certainly hardware is just a portion of the machine learning challenge being addressed.

Data showing increase in PRP performance over time.

Like PRP before it, CHASE-CI is a response to an NSF call for community computer science infrastructure. Unlike PRP, which is focused on applications (e.g. geoscience, bioscience) and whose architecture was largely defined by guidance from domain scientists, CHASE-CI is being driven by needs of computer scientists trying to support big data and machine learning.

The full principal investigator team is an experienced and accomplished group including: Smarr, (Principal Investigator), Calit2; Tajana Rosing (Co-Principal Investigator), Professor, CSE Department, UCSD; Ilkay Altintas (Co-Principal Investigator), Chief Data Science Officer, San Diego Supercomputer Center; DeFanti (Co-Principal Investigator), Full Research Scientist at the UCSD Qualcomm Institute, a division of Calit2;  and Kenneth Kreutz-Delgado (Co-Principal Investigator), Professor, ECE Department, UCSD.

“What they didn’t ask for [in the PRP grant] was what computer scientists need to support big data and machine learning. So we went back to the campuses and found the computers scientists, faculty and staff that were working on machine learning and ended up with 30 of them that wrote up their research to put into this proposal,” says Smarr. “We asked what was bottlenecking the work and [they responded] it was a lack of access to GPUs to do the compute intensive aspects of machine learning like training data sets on big neural nets.”

Zeroing in on GPUs, particularly GPUs that emphasize lower precision, is perhaps predictable.

“[In traditional] HPC you need 64-bit and error correction and all of that kind of stuff which is provided very nicely by Nvidia’s Tesla line, for instance, but actually because of the noise that is inherent in the data in most machine learning applications it turns out that single precision 32-bit is just fine and that’s much less expensive than the double precision,” says Smarr. For this reason, the project is focusing on less expensive “gaming GPUs” which fit fine into the slots on the FIONAs since they are PCs.

The NSF proposal first called for putting ten GPUs into each FIONA. “But we decided eight is probably optimal, eight of these front line game GPUs and we are deploying 32 of those FIONAs in this new grant across PRP to these researchers, and because they are all connected at 10 gigabits/s we can essentially treat them as a cloud,” says Smarr. There are ten campuses initially participating: UC San Diego, UC Berkeley, UC Irvine, UC Riverside, UC Santa Cruz, UC Merced, Sand Diego State University, Caltech, Stanford, and Montana State University. [A brief summary of researchers and their intended focus by campus is at the end of the article (taken from the grant proposal).]

As shown in the cost comparison below, the premium for high end GPUs such as the Nvidia P100 is dramatic. The CHASE-CI plan is to stick with commodity gaming GPUs, like the Nvidia 1080, since they are used in large volumes which keeps the prices down and the improvements coming. Nevertheless Smarr and DeFanti emphasize they are vendor agnostic and that other vendors have expressed interest in the program.

“Every year Nvidia comes out with a new set of devices and then halfway way through the year they come out with an accelerated version so in some sense you are on a six month cycle. The game cards are around $600 and every year the [cost performance] gets better,” says DeFanti. “We buy what’s available, build, test, and benchmark and then we wait for the next round. [Notably], people in the community do have different needs – some need more memory, some would rather have twice as many $250 GPUs because they are really fast and just have less memory. So it is really kind of custom and there’s some negotiation with users, but they all fit in the same chassis.”

DeFanti argues the practice of simulating networks on CPUs has slowed machine learning’s growth. “Machine learning involves looking at gigabytes of data, millions of pictures, and basically doing that is a brute force calculation that works fine in 32 bit, nobody uses 64 bit. You chew on these things literally for a week even on a GPU, which is much faster than a CPU for these kind of these things. That’s a reason why this field was sort of sluggish just using simulators; it took too much time on desktop CPUs. The first phase of this revolution is getting everybody off simulators.”

That said, getting high performance GPUs into the hands of researchers and students is only half of the machine learning story. Training is hard and compute-intensive and can take weeks-to-months depending upon the problem. But once a network is trained, the computer power required for the inference engine is considerably less. Power consumption becomes the challenge particularly because these trained networks are expected to be widely deployed on mobile platforms.

Here, CHASE-CI is examining a wide range of device types and architectures. Calit2, for example, has been working with IBM’s neuromorphic True North chip for a couple of years. It also had a strong role in helping KnuEdge develop its DSP-based neural net chip. (KnuEdge, of course, was founded by former NASA administrator Daniel Goldin.) FPGAs also show promise.

Says Smarr, “They have got to be very energy efficient. You have this whole new generation of largely non von Neumann architectures that are capable of executing these machine learning algorithms on say streams of video data, radar data, LIDAR data, things like that, that make decisions in real time like approval on credit cards. We are building up a set of these different architectures – von Neumann and non von Neumann – and making those available to these 30 machine learning experts.”

CHASE-CI is also digging into the needed software ecosystem to support machine learning. The grant states “representative algorithms from each of the following six families will be selected to form a standardized core suite of ‘component algorithms’ that have been tuned for optimal performance on the component coprocessors.” Here they are:

  • Deep Neural Network (DNN) and Recurrent Neural Network (RNN) algorithms, including layered networks having fully-connected and convolutional layers (CNNs), variational autoencoders (VAEs), and generalized adversarial networks (GANs). Training will be done using, modern approaches to backpropagation, stochastic sampling, bootstrap sampling, and restricted (and unrestricted) Boltzmann ML. NNs provide powerful classification and detection performance and can automatically extract a hierarchy of features.
  • Reinforcement Learning (RL) algorithms and related approximate Markov decision process (MDP) algorithms. RL and inverse-RL algorithms have critical applications in areas of dynamic decision-making, robotics and human/robotic transfer learning.
  • Variational Autoencoder (VAE) and Markov Chain Monte Carlo (MCMC) stochastic sampling algorithms supporting the training of generative models and metrics for evaluating the quality of generative model algorithms. Stochastic sampling algorithms are appropriate for training generative models on analog and digital spiking neurons. Novel metrics are appropriate.
  • Support Vector Machine (SVM) SVMs can perform an inner product and thresholding in a high-dimensional feature space via use of the “kernel trick”.
  • Sparse Signal Processing (SSP) algorithms for sparse signal processing and compressive sensing, including Sparse Baysian Learning (SBL). Algorithms which exploit source sparsity, possibly using learned over-complete dictionaries, are very important in domains such as medical image processing and brain-computing interfacing.
  • Latent Variable (LVA) Algorithms for source separation algorithms, such as PCA, ICA, and IVA. LV models typically assume that a solution exists in some latent variable sparse within which the components are statistically independent. This class of algorithms includes factor analysis (FA) and non-negative matrix factorization (NMF) algorithms.

Despite such ambitious hardware and software goals, Smarr suggests early results from CHASE-CI should be available sometime in the fall. Don’t get the wrong idea, he cautions. CHASE-CI is a research project for computer science not a production platform.

“We are not trying to be a big production site or anything else. But we are trying to really explore, as this field develops, not just the hardware platforms we’ve talked about but the software and algorithm issues. There’s a whole bunch of different modes of machine learning and statistical analysis that we are trying to match between the algorithms and the architectures, both von Neumann and non von Neumann.

“For 30 years I have been sort of collecting architectures and mapping a wide swath of algorithms on them to port applications. Here we are doing it again but now for machine learning.”

Sample List of CHASE-CI Researchers and Area of Work*

  • UC San Diego: Ravi Ramamoorthi (ML for processing light field imagery), Manmohan Chandraker (3D scene reconstruction), Arun Kumar (deep learning for database systems), Rajesh Gupta (accelerator-centric SOCs), Gary Cottrell (comp. cognitive neuroscience & computer vision), Nuno Vasconcelos (computer vision & ML), Todd Hylton (contextual robotics), Jurgen Schulze (VR), Ken Kreutz-Delgado (ML and NvN), Larry Smarr (ML and microbiome), Tajana Rosing (energy efficiency of running MLs on NvNs), Falko Kuester (ML on NvNs in drones).
  • UC Berkeley: James Demmel (CA algorithms), Trevor Darrell (ML libraries)
  • UC Irvine: Padhraic Smyth (ML for biomedicine and climate science), Jeffrey Krichmar 
(computational neuroscience), Nikkil Dutt (FPGAs), Anima Anandkumar (ML)
  • UC Riverside: Walid Najjar (FPGAs), Amit Roy-Chowdhury (image and video analysis)
  • UC Santa Cruz: Dimitris Achlioptas (linear layers and random bipartite graphs), Lise Getoor (large-scale graph processing), Ramakrishna Akella (multi-modal prediction and retrieval), Shawfeng Dong (Bayesian deep learning and CNN models in astronomy)
  • UC Merced: Yang Quan Chen (agricultural drones)
  • San Diego State: Baris Aksanli (adaptive learning for historical data)
  • Caltech: Yisong Yue (scalable deep learning methods for complex prediction settings)
  • Stanford: Anshul Kundaje (ML & genetics), Ron Dror (structure-based drug design using ML)
  • Montana State: John Sheppard (ML and probablistic methods to solve large systems problems)

*  Excerpted from the CHASE-CI grant proposal

Images courtesy of Larry Smarr, Calit2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This