IBM Raises the Bar for Distributed Deep Learning

By Tiffany Trader

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scaling to 256 GPUs with its new distributed deep learning (DLL) library, IBM reports that it has bested previous records set by Google and Facebook on two well-known image recognition workloads.

“This is one of the bigger breakthroughs I have seen in a while in all of the deep learning industry announcements over the last six months,” said Patrick Moorhead, president and principal analyst of Moor Insights & Strategy. “The interesting part is that it is from IBM, not one of the web giants like Google, which means it is available to enterprises from on-prem use using OpenPower hardware and PowerAI software or even through cloud provider Nimbix.”

The crux of the announcement is a new communication algorithm developed by IBM Research scientists and encapsulated as a communication library, called PowerAI DDL. The library and APIs are available today as a technical preview to Power users as part of the PowerAI version 4.0 release. Other efforts to improve multi-node communication have tended to focus on only a single deep learning framework, so it’s notable that the PowerAI DDL is being integrated into multiple frameworks. Currently TensorFlow, Caffe and Torch are supported with plans to add Chainer.

Customers who don’t have their own Power systems can access the new PowerAI software via the Nimbix Power Cloud.

“Like the hyperscalers and large enterprises, Nimbix has been working to build distributed capability into deep learning frameworks and it just so happens that what IBM is announcing is effectively a turnkey software solution that implements that in multiple frameworks,” said Nimbix CEO Steve Hebert.

“This is truly an HPC technology,” he continued. “It’s taking some of the best software components of traditional HPC and marrying those up with AI and deep learning to be able to deliver that solution. Our platform is ideally suited for scaling out in the HPC sense, very low latency for codes that get that linear scaling of problem sizes. That means for deep learning we can start to tackle enterprise-class deep learning problems basically on day one. For this to become available to any company or consumer outside of [the big hyperscalers], like Google, Baidu, etc., it really democratizes access to everybody.”

The multi-ring communication algorithm within DDL is described (see IBM Research paper) as providing a good tradeoff between latency and bandwidth, as well as being adaptable to a variety of network configurations. The full method is proprietary but section 4 of the paper provides a fairly detailed description of the library and algorithm.

The current PowerAI DDL implementation is based on Spectrum MPI. “MPI provides many needed facilities, from scheduling processes to basic communication primitives, in a portable, efficient and mature software ecosystem” state the researchers, although they add the “core API can be implemented without MPI if desired.”

To evaluate the performance of its new PowerAI Distributed Deep Learning library, IBM performed two experiments using a cluster of 64 IBM “Minsky” Power8 SL822LC servers, each equipped with four Nvidia Tesla P100 GPUs connected through Nvidia’s high-speed NVLink interconnect. The systems occupied four racks (16 nodes each), connected via InfiniBand.

IBM reports that the combination of its Power hardware and software offers better communication overhead for the Resnet-50 neural network using Caffe than what Facebook recently achieved with the Caffe2 deep learning software. The IBM Research DDL software achieved an efficiency of 95 percent using Caffe on its 256-GPU Minsky cluster whereas Facebook achieved 89 percent scaling efficiency on a 256 NVIDIA P100 GPU accelerated DGX-1 cluster using the Caffe2 framework. Implementation differences that could affect the comparison, e.g., Caffe versus Caffe2, are discussed in the IBM Research paper.

Scaling results using Caffe with PowerAI DLL to train a ResNet-50 model using the ImageNet-1K data set on 64 Power8 servers that have a total of 256 Nvidia P100 GPUs (Source: IBM)

In the second benchmark test, IBM Research reported a new image recognition accuracy of 33.8 percent for a Resnet-101 neural network trained on a very large data set (7.5 million images, part of the ImageNet-22k set). The previous record published by Microsoft in 2014 demonstrated 29.8 percent accuracy.

IBM Research fellow Hillery Hunter observed that a 4 percent increase in accuracy is a big leap forward as typical improvements in the past have been less than 1 percent.

Further, with IBM’s distributed deep learning approach, the ResNet-101 neural network model was trained in just seven hours, compared to the 10 days it took Microsoft took to train the same model. IBM reported a scaling efficiency of 88 percent.

Sumit Gupta, vice president of AI and HPC within IBM’s Cognitive Systems business unit, believes the increased speed and accuracy will be a huge boon to enterprise clients. “Part of challenge has been if it takes 16 days to train an AI model it’s not really practical,” he said. “You only have a few data scientists when you work in a large enterprise and you really need to make them productive so bringing down that 16 days to 7 hours makes data scientists much more productive.”

Certain applications are particularly time-constrained. “In security, military, fraud protection, and autonomous vehicles you often only have minutes or seconds to train a system to deal with a new exploit or problem but currently it generally takes days,” said market analyst Rob Enderle. “This effectively reduces days to hours, and provides a potential road map to get to minutes and even seconds.” It’s scenarios like these that make buying Power Systems to speed deep learning far easier to justify, he added.

The list of use cases seemingly grows longer by the day. Recommendation engines, credit card fraud detection, mortgage analysis, upsell/cross-sell to retail clients, shopping experience analysis are all getting a lot of attention from IBM’s customers.

“The giants like Microsoft and Google and others who have consumer apps, they obviously are getting on the consumer platform a lot of data all the time. So their use cases in many cases are very obvious, finding images of dogs in Google photos,” for example, said Gupta. “But we see enterprise clients have lots of data and lots of use cases they are now getting around to using these methods.”

The next step for IBM researchers is to document scaling beyond 256 GPUs as their current findings indicate that is feasible. “We don’t see a reason why the method would slow down when we double the size of the system,” said Gupta.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This