IBM Raises the Bar for Distributed Deep Learning

By Tiffany Trader

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scaling to 256 GPUs with its new distributed deep learning (DLL) library, IBM reports that it has bested previous records set by Google and Facebook on two well-known image recognition workloads.

“This is one of the bigger breakthroughs I have seen in a while in all of the deep learning industry announcements over the last six months,” said Patrick Moorhead, president and principal analyst of Moor Insights & Strategy. “The interesting part is that it is from IBM, not one of the web giants like Google, which means it is available to enterprises from on-prem use using OpenPower hardware and PowerAI software or even through cloud provider Nimbix.”

The crux of the announcement is a new communication algorithm developed by IBM Research scientists and encapsulated as a communication library, called PowerAI DDL. The library and APIs are available today as a technical preview to Power users as part of the PowerAI version 4.0 release. Other efforts to improve multi-node communication have tended to focus on only a single deep learning framework, so it’s notable that the PowerAI DDL is being integrated into multiple frameworks. Currently TensorFlow, Caffe and Torch are supported with plans to add Chainer.

Customers who don’t have their own Power systems can access the new PowerAI software via the Nimbix Power Cloud.

“Like the hyperscalers and large enterprises, Nimbix has been working to build distributed capability into deep learning frameworks and it just so happens that what IBM is announcing is effectively a turnkey software solution that implements that in multiple frameworks,” said Nimbix CEO Steve Hebert.

“This is truly an HPC technology,” he continued. “It’s taking some of the best software components of traditional HPC and marrying those up with AI and deep learning to be able to deliver that solution. Our platform is ideally suited for scaling out in the HPC sense, very low latency for codes that get that linear scaling of problem sizes. That means for deep learning we can start to tackle enterprise-class deep learning problems basically on day one. For this to become available to any company or consumer outside of [the big hyperscalers], like Google, Baidu, etc., it really democratizes access to everybody.”

The multi-ring communication algorithm within DDL is described (see IBM Research paper) as providing a good tradeoff between latency and bandwidth, as well as being adaptable to a variety of network configurations. The full method is proprietary but section 4 of the paper provides a fairly detailed description of the library and algorithm.

The current PowerAI DDL implementation is based on Spectrum MPI. “MPI provides many needed facilities, from scheduling processes to basic communication primitives, in a portable, efficient and mature software ecosystem” state the researchers, although they add the “core API can be implemented without MPI if desired.”

To evaluate the performance of its new PowerAI Distributed Deep Learning library, IBM performed two experiments using a cluster of 64 IBM “Minsky” Power8 SL822LC servers, each equipped with four Nvidia Tesla P100 GPUs connected through Nvidia’s high-speed NVLink interconnect. The systems occupied four racks (16 nodes each), connected via InfiniBand.

IBM reports that the combination of its Power hardware and software offers better communication overhead for the Resnet-50 neural network using Caffe than what Facebook recently achieved with the Caffe2 deep learning software. The IBM Research DDL software achieved an efficiency of 95 percent using Caffe on its 256-GPU Minsky cluster whereas Facebook achieved 89 percent scaling efficiency on a 256 NVIDIA P100 GPU accelerated DGX-1 cluster using the Caffe2 framework. Implementation differences that could affect the comparison, e.g., Caffe versus Caffe2, are discussed in the IBM Research paper.

Scaling results using Caffe with PowerAI DLL to train a ResNet-50 model using the ImageNet-1K data set on 64 Power8 servers that have a total of 256 Nvidia P100 GPUs (Source: IBM)

In the second benchmark test, IBM Research reported a new image recognition accuracy of 33.8 percent for a Resnet-101 neural network trained on a very large data set (7.5 million images, part of the ImageNet-22k set). The previous record published by Microsoft in 2014 demonstrated 29.8 percent accuracy.

IBM Research fellow Hillery Hunter observed that a 4 percent increase in accuracy is a big leap forward as typical improvements in the past have been less than 1 percent.

Further, with IBM’s distributed deep learning approach, the ResNet-101 neural network model was trained in just seven hours, compared to the 10 days it took Microsoft took to train the same model. IBM reported a scaling efficiency of 88 percent.

Sumit Gupta, vice president of AI and HPC within IBM’s Cognitive Systems business unit, believes the increased speed and accuracy will be a huge boon to enterprise clients. “Part of challenge has been if it takes 16 days to train an AI model it’s not really practical,” he said. “You only have a few data scientists when you work in a large enterprise and you really need to make them productive so bringing down that 16 days to 7 hours makes data scientists much more productive.”

Certain applications are particularly time-constrained. “In security, military, fraud protection, and autonomous vehicles you often only have minutes or seconds to train a system to deal with a new exploit or problem but currently it generally takes days,” said market analyst Rob Enderle. “This effectively reduces days to hours, and provides a potential road map to get to minutes and even seconds.” It’s scenarios like these that make buying Power Systems to speed deep learning far easier to justify, he added.

The list of use cases seemingly grows longer by the day. Recommendation engines, credit card fraud detection, mortgage analysis, upsell/cross-sell to retail clients, shopping experience analysis are all getting a lot of attention from IBM’s customers.

“The giants like Microsoft and Google and others who have consumer apps, they obviously are getting on the consumer platform a lot of data all the time. So their use cases in many cases are very obvious, finding images of dogs in Google photos,” for example, said Gupta. “But we see enterprise clients have lots of data and lots of use cases they are now getting around to using these methods.”

The next step for IBM researchers is to document scaling beyond 256 GPUs as their current findings indicate that is feasible. “We don’t see a reason why the method would slow down when we double the size of the system,” said Gupta.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated more efforts (academic, government, and commercial) but whose Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitment to holistic sustainability as well as launching a managed Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. Well, say hello to Pluribus, an upgraded bot, which has now be Read more…

By John Russell

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. We Read more…

By John Russell

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This