IBM Raises the Bar for Distributed Deep Learning

By Tiffany Trader

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scaling to 256 GPUs with its new distributed deep learning (DLL) library, IBM reports that it has bested previous records set by Google and Facebook on two well-known image recognition workloads.

“This is one of the bigger breakthroughs I have seen in a while in all of the deep learning industry announcements over the last six months,” said Patrick Moorhead, president and principal analyst of Moor Insights & Strategy. “The interesting part is that it is from IBM, not one of the web giants like Google, which means it is available to enterprises from on-prem use using OpenPower hardware and PowerAI software or even through cloud provider Nimbix.”

The crux of the announcement is a new communication algorithm developed by IBM Research scientists and encapsulated as a communication library, called PowerAI DDL. The library and APIs are available today as a technical preview to Power users as part of the PowerAI version 4.0 release. Other efforts to improve multi-node communication have tended to focus on only a single deep learning framework, so it’s notable that the PowerAI DDL is being integrated into multiple frameworks. Currently TensorFlow, Caffe and Torch are supported with plans to add Chainer.

Customers who don’t have their own Power systems can access the new PowerAI software via the Nimbix Power Cloud.

“Like the hyperscalers and large enterprises, Nimbix has been working to build distributed capability into deep learning frameworks and it just so happens that what IBM is announcing is effectively a turnkey software solution that implements that in multiple frameworks,” said Nimbix CEO Steve Hebert.

“This is truly an HPC technology,” he continued. “It’s taking some of the best software components of traditional HPC and marrying those up with AI and deep learning to be able to deliver that solution. Our platform is ideally suited for scaling out in the HPC sense, very low latency for codes that get that linear scaling of problem sizes. That means for deep learning we can start to tackle enterprise-class deep learning problems basically on day one. For this to become available to any company or consumer outside of [the big hyperscalers], like Google, Baidu, etc., it really democratizes access to everybody.”

The multi-ring communication algorithm within DDL is described (see IBM Research paper) as providing a good tradeoff between latency and bandwidth, as well as being adaptable to a variety of network configurations. The full method is proprietary but section 4 of the paper provides a fairly detailed description of the library and algorithm.

The current PowerAI DDL implementation is based on Spectrum MPI. “MPI provides many needed facilities, from scheduling processes to basic communication primitives, in a portable, efficient and mature software ecosystem” state the researchers, although they add the “core API can be implemented without MPI if desired.”

To evaluate the performance of its new PowerAI Distributed Deep Learning library, IBM performed two experiments using a cluster of 64 IBM “Minsky” Power8 SL822LC servers, each equipped with four Nvidia Tesla P100 GPUs connected through Nvidia’s high-speed NVLink interconnect. The systems occupied four racks (16 nodes each), connected via InfiniBand.

IBM reports that the combination of its Power hardware and software offers better communication overhead for the Resnet-50 neural network using Caffe than what Facebook recently achieved with the Caffe2 deep learning software. The IBM Research DDL software achieved an efficiency of 95 percent using Caffe on its 256-GPU Minsky cluster whereas Facebook achieved 89 percent scaling efficiency on a 256 NVIDIA P100 GPU accelerated DGX-1 cluster using the Caffe2 framework. Implementation differences that could affect the comparison, e.g., Caffe versus Caffe2, are discussed in the IBM Research paper.

Scaling results using Caffe with PowerAI DLL to train a ResNet-50 model using the ImageNet-1K data set on 64 Power8 servers that have a total of 256 Nvidia P100 GPUs (Source: IBM)

In the second benchmark test, IBM Research reported a new image recognition accuracy of 33.8 percent for a Resnet-101 neural network trained on a very large data set (7.5 million images, part of the ImageNet-22k set). The previous record published by Microsoft in 2014 demonstrated 29.8 percent accuracy.

IBM Research fellow Hillery Hunter observed that a 4 percent increase in accuracy is a big leap forward as typical improvements in the past have been less than 1 percent.

Further, with IBM’s distributed deep learning approach, the ResNet-101 neural network model was trained in just seven hours, compared to the 10 days it took Microsoft took to train the same model. IBM reported a scaling efficiency of 88 percent.

Sumit Gupta, vice president of AI and HPC within IBM’s Cognitive Systems business unit, believes the increased speed and accuracy will be a huge boon to enterprise clients. “Part of challenge has been if it takes 16 days to train an AI model it’s not really practical,” he said. “You only have a few data scientists when you work in a large enterprise and you really need to make them productive so bringing down that 16 days to 7 hours makes data scientists much more productive.”

Certain applications are particularly time-constrained. “In security, military, fraud protection, and autonomous vehicles you often only have minutes or seconds to train a system to deal with a new exploit or problem but currently it generally takes days,” said market analyst Rob Enderle. “This effectively reduces days to hours, and provides a potential road map to get to minutes and even seconds.” It’s scenarios like these that make buying Power Systems to speed deep learning far easier to justify, he added.

The list of use cases seemingly grows longer by the day. Recommendation engines, credit card fraud detection, mortgage analysis, upsell/cross-sell to retail clients, shopping experience analysis are all getting a lot of attention from IBM’s customers.

“The giants like Microsoft and Google and others who have consumer apps, they obviously are getting on the consumer platform a lot of data all the time. So their use cases in many cases are very obvious, finding images of dogs in Google photos,” for example, said Gupta. “But we see enterprise clients have lots of data and lots of use cases they are now getting around to using these methods.”

The next step for IBM researchers is to document scaling beyond 256 GPUs as their current findings indicate that is feasible. “We don’t see a reason why the method would slow down when we double the size of the system,” said Gupta.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This