HPE Ships Supercomputer to Space Station, Final Destination Mars

By Tiffany Trader

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if such a system, equipped with purpose-built software from HPE, can operate successfully under harsh environmental conditions that include radiation, solar flares, and unstable electrical power.

Currently ruggedizing space-bound computers is a years-long process, so that by the time they blast off they are three to four generations behind the current state of the art. HPE has designed its new system software to mitigate environmentally induced errors using real-time adaptive throttling techniques. If successful, it would mean that space travelers need not go through the extensive hardening process for their computers and would benefit from the latest technologies.

After this morning’s launch from NASA’s Kennedy Space Center (Merritt Island, Florida), the Spaceborne Computer is headed to the International Space Station (ISS) for one year, which is about how long it takes to get to Mars.

“Our vision is to have a general purpose HPC supercomputer on board the space craft,” said Dr. Mark Fernandez, leading payload engineer for the project. “Today, all of the experiments must send the data to earth over the precious network bandwidth and this opens up the opportunity to what we’ve been talking a lot about lately, which is bring the compute to the data rather than bring the data to the compute.”

As one considers the latency and bandwidth issues of space travel, the advantage of on-board HPC is clear. The average round trip signal as you get close to Mars is 26 minutes. With this delay, it’s hard to have a conversation over this network much less carry out complex computational tasks. “When you need on the spot computation, for simulation, analytics, artificial intelligence, the answers tends to get a bit too long to come by if you rely on earth so more and more as you travel further and further out you need to carry more compute power with you – this is our belief,” said Dr. Eng Lim Goh, VP, Chief Technology Officer of SGI at HPE and one of the inventors of the approach.

Ultimately HPE is positioning itself to provide its memory-based The Machine supercomputer for Mars exploration.

Sending people to Mars opens up enormous computing demands. They will need to be “guided by a computer capable of performing extraordinary tasks,” writes Kirk Bresniker, Chief Architect, Hewlett Packard labs. These include:

  • Monitoring onboard systems the way a smart city would monitor itself—anticipating and addressing problems before they threaten the mission.
  • Tracking minute-by-minute changes in astronaut health—monitoring vitals and personalizing treatments to fit the exact need in the exact moment.
  • Coordinating every terrestrial, deep space, Martian orbital and rover sensor available, so crew and craft can react to changing conditions in real time.
  • And, perhaps most importantly… combining these data sets to find the hidden correlations that can keep a mission and crew alive.

“Memory-Driven Computing will help us efficiently and effectively tackle the big data challenges of our day, and make it possible for us to—one day—send humans to Mars,” asserts Goh. “But even if we expect Memory-Driven Computing to become the standard for supercomputing in space we need to start somewhere.”

To that end, the phase one Spaceborne Computer includes two x86 HPE Apollo 40-class two-socket systems, powered by Broadwell processors. These are the latest generation Xeons at the point the configuration was frozen by NASA in March ahead of shipment.

The InfiniBand-connected Linux cluster will be housed in a standard NASA dimension locker, equipped with standard Ethernet cables, standard 110 volt AC connectors and NASA-approved cooling technology. The rack design means the system can be easily swapped out for an upgraded model. No modifications were made to the main components, but HPE created a custom water-cooled enclosure that taps into a cooling loop on the space station, leveraging the free ambient cooling of space.

During the year spent circling Earth’s orbit, the computer will run three HPC benchmarks, each of which targets a different kind of computational workload: the compute and power-hungry Linpack, the data intensive HPCG and a benchmark suite from NASA, the NAS parallel benchmark.

“We selected these for relevance, to be as realistic as possible for NASA and space related work,” said Goh.

HPE designed the entire experiment so that testing can run autonomously. “It doesn’t require the astronauts to be system engineers,” said Goh. “They just need to plug the system in and turn it on and the experiments will run automatically.”

The tests will generate approximately 5 megabytes of data per day that will be sent to HPE for analysis. There’s also the capability for an uplink that would give cleared HPE team members limited access to the system, but the plan is to run autonomously other than the regular downloads of data, which will be compared with a control machine in Chippewa Falls, Wisconsin.

Through its SGI acquisition, HPE has a relationship with NASA that extends back 30 years. The Spaceborne Computer “Apollo 40” compute nodes are the same class as those used in the NASA’s flagship Pleiades supercomputer, an SGI ICE X machine that is ranked at number 15 on the current Top500 list.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This