HPE Ships Supercomputer to Space Station, Final Destination Mars

By Tiffany Trader

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if such a system, equipped with purpose-built software from HPE, can operate successfully under harsh environmental conditions that include radiation, solar flares, and unstable electrical power.

Currently ruggedizing space-bound computers is a years-long process, so that by the time they blast off they are three to four generations behind the current state of the art. HPE has designed its new system software to mitigate environmentally induced errors using real-time adaptive throttling techniques. If successful, it would mean that space travelers need not go through the extensive hardening process for their computers and would benefit from the latest technologies.

After this morning’s launch from NASA’s Kennedy Space Center (Merritt Island, Florida), the Spaceborne Computer is headed to the International Space Station (ISS) for one year, which is about how long it takes to get to Mars.

“Our vision is to have a general purpose HPC supercomputer on board the space craft,” said Dr. Mark Fernandez, leading payload engineer for the project. “Today, all of the experiments must send the data to earth over the precious network bandwidth and this opens up the opportunity to what we’ve been talking a lot about lately, which is bring the compute to the data rather than bring the data to the compute.”

As one considers the latency and bandwidth issues of space travel, the advantage of on-board HPC is clear. The average round trip signal as you get close to Mars is 26 minutes. With this delay, it’s hard to have a conversation over this network much less carry out complex computational tasks. “When you need on the spot computation, for simulation, analytics, artificial intelligence, the answers tends to get a bit too long to come by if you rely on earth so more and more as you travel further and further out you need to carry more compute power with you – this is our belief,” said Dr. Eng Lim Goh, VP, Chief Technology Officer of SGI at HPE and one of the inventors of the approach.

Ultimately HPE is positioning itself to provide its memory-based The Machine supercomputer for Mars exploration.

Sending people to Mars opens up enormous computing demands. They will need to be “guided by a computer capable of performing extraordinary tasks,” writes Kirk Bresniker, Chief Architect, Hewlett Packard labs. These include:

  • Monitoring onboard systems the way a smart city would monitor itself—anticipating and addressing problems before they threaten the mission.
  • Tracking minute-by-minute changes in astronaut health—monitoring vitals and personalizing treatments to fit the exact need in the exact moment.
  • Coordinating every terrestrial, deep space, Martian orbital and rover sensor available, so crew and craft can react to changing conditions in real time.
  • And, perhaps most importantly… combining these data sets to find the hidden correlations that can keep a mission and crew alive.

“Memory-Driven Computing will help us efficiently and effectively tackle the big data challenges of our day, and make it possible for us to—one day—send humans to Mars,” asserts Goh. “But even if we expect Memory-Driven Computing to become the standard for supercomputing in space we need to start somewhere.”

To that end, the phase one Spaceborne Computer includes two x86 HPE Apollo 40-class two-socket systems, powered by Broadwell processors. These are the latest generation Xeons at the point the configuration was frozen by NASA in March ahead of shipment.

The InfiniBand-connected Linux cluster will be housed in a standard NASA dimension locker, equipped with standard Ethernet cables, standard 110 volt AC connectors and NASA-approved cooling technology. The rack design means the system can be easily swapped out for an upgraded model. No modifications were made to the main components, but HPE created a custom water-cooled enclosure that taps into a cooling loop on the space station, leveraging the free ambient cooling of space.

During the year spent circling Earth’s orbit, the computer will run three HPC benchmarks, each of which targets a different kind of computational workload: the compute and power-hungry Linpack, the data intensive HPCG and a benchmark suite from NASA, the NAS parallel benchmark.

“We selected these for relevance, to be as realistic as possible for NASA and space related work,” said Goh.

HPE designed the entire experiment so that testing can run autonomously. “It doesn’t require the astronauts to be system engineers,” said Goh. “They just need to plug the system in and turn it on and the experiments will run automatically.”

The tests will generate approximately 5 megabytes of data per day that will be sent to HPE for analysis. There’s also the capability for an uplink that would give cleared HPE team members limited access to the system, but the plan is to run autonomously other than the regular downloads of data, which will be compared with a control machine in Chippewa Falls, Wisconsin.

Through its SGI acquisition, HPE has a relationship with NASA that extends back 30 years. The Spaceborne Computer “Apollo 40” compute nodes are the same class as those used in the NASA’s flagship Pleiades supercomputer, an SGI ICE X machine that is ranked at number 15 on the current Top500 list.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This