Tech Giants Outline Battle Plans for Future HPC Market

By Doug Black

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency penalties of data movement is Public Enemy No. 1. If we are to realize the promise of exascale computing for AI, data analytics and HPC, advanced scale systems must be rearchitected in ways that, above all, get data closer to compute – though precisely how to do that is a matter of major contention.

Technology strategists from Intel, Nvidia, HPE and Mellanox gathered last week at the Rocky Mountain Advanced Computing Consortium Symposium for a debate on “The Future of HPC Architecture.” Moderated by Tiffany Trader, managing editor of HPCwire, and Thomas Hauser, director of Research Computing at the University of Colorado Boulder, the panelists described their companies’ strategies for enabling exascale to become a practical, accessible reality (incidentally, IBM was invited to participate but declined).

Each of the four agrees that achieving exascale will require radical enhancements in compute capabilities. Each of the four is captivated by an architectural vision that places data, and reduction in data movement latency, at the center of the compute universe.

This means more than just putting more data into memory of increasingly gigantic capacity (we’ve heard talk of memory technology that will hold decades of data). That’s an important part of data centric computing but not all of it. It’s also about architectural schemes that shorten the connections between storage, memory and compute – whether by integrating memory and interconnect functions within a multi-capability processor (Intel’s Scalable System Framework), or by distributing compute to wherever data is located in the compute ecosystem – whether it’s in memory, in storage, in the network, at the edge.

This is a critical part of the strategy for deliveringe exascale systems that will power the increasingly powerful forms of AI to come. AI is candy for technology strategists at the upper echelons of business, scientific research, national defense and government, and the four technology companies represented at the RMACC panel (along with hundreds of other vendors) are the confectioners determined to deliver it.

From left, Bill Magro of Intel, Marc Hamilton of Nvidia, Jerry Lotto of Mellanox, Mike Vildibill of HPE

Of course, how that architecture is cobbled together will be the key technology battleground of the coming decade. It’s all in the details. There are many ideas of dispersing and parallelizing computing power via architectural schemes, though not necessarily lots of agreement. Looked at one way, Intel seems to be moving toward a camp of its own under the umbrella of its tightly integrated Scalable Systems Framework. In another camp is Nvidia, HPE and Mellanox, where compute has vacated the center and is distributed throughout the system, wherever data resides.

“Distributed computing anywhere data lives is going to be the key to the future,” said Jerry Lotto, director HPC and technical computing at Mellanox. In response to this definitive statement, HPE’s Mike Vildibill, VP, Advanced Technologies Group, joked “Well, I’m trying desperately to have a different opinion from my colleagues….”

A central theme of the discussion, one universally agreed upon, was not just how to achieve exascale computing but how to make it relevant, accessible and practical for a broad array of workloads throughout public and private sector elements of the HPC community. The difficulties of scaling the exascale summit are immense.

Let’s consider power consumption. Vildibill put it into perspective by saying that if each system on the list of the world’s Top500 supercomputers is considered a node, the cumulative compute power of that system is roughly an exaflop of peak performance – from a system that consumes more than 650 megawatts of power (the output of a large nuclear power plant).

Clearly, greater efficiencies will have to be made if an exascale system is delivered in the 2022-23 timeframe with a footprint that fits into a reasonably sized data center that consumes 20-30MW. “That requirement alone is fundamentally driving a lot of development we’re doing at HPE,” Vildibill said, “…driving some very significant changes in system architecture done in a way that we can maintain legacy and we can still run our favorite MPI codes, but also address how data movement occurs within large-scale systems.”

“The power analysis we’ve done – and everyone’s done it and come to pretty much the same conclusion – is that something different needs to be done in the way we compute, the way we couple computation together,” said Bill Magro, an Intel Fellow and chief technologist, high performance computing software.

Specifically addressing data movement in HPC systems, he said, “Every time you move data you incur a latency, and the further the parts are apart in the system or even in a node, you suffer that latency.”

“You need programming models and compute engines that avoid moving data,” Magro said, “you need fabrics that have very efficient protocols driven by the needs of HPC to minimize back and forth traffic, whether it be for payloads, protocols or even just guarding the integrity of the data. These are the things we’re looking at.

All of this has brought about profound change in Intel’s HPC strategy, he said. It’s part of the reason Intel now describes itself as a data-centric company.

“Intel’s history has been to drive compute up and up and up,” Magro said. “But we realized a few years ago that compute actually isn’t the hardest problem, it’s everything that’s wrapped around the compute, giving (the system) balance: memory technology, fabric, storage.

“We’re trying to approach this with a systems point of view, even though we’re not a systems company,” he said, alluding to Intel’s Scalable System Framework, “because we don’t think you can get to exascale by working on components individually.”

Marc Hamilton, VP, solutions architecture and engineering at Nvidia, said the company addresses latency problems in part via a heterogeneous architecture, called “fat nodes,” in which “you have a latency-optimized core, such as a CPU, combined with a throughput-optimized core, such as a GPU” within a single system that minimizes data movement.

“You’re always going to be able to move data faster on a piece of silicon or on a motherboard than over a network,” he said.

Mellanox’s Lotto discussed taking latency out of networks by adding intelligence and compute within them.

“Traditionally, we had CPU-centric networks,” Lotto said. “The idea was that the network was basically a passive component of a cluster, that data was going to be delivered to end points in order for computation to take place. We’re trying to move toward a more data centric model for computing by enabling network devices to actually contribute to the computational load. We can offload a lot of the computational capacity from the CPU to the network.”

He cited a raft of technologies under development by Mellanox, including SHARPSHIELD and other products, designed with the goal reducing the latency of communications frameworks like MPI down by an order of magnitude, to 3 or 4 microseconds.

Lotto expanded on these remarks to say that while processing will go wherever data exists, there also will be “coexistence” of applications and workloads within a learning environment.

“We think exascale isn’t going to look like today’s systems in terms of usages,” he said. “It’s not just going to be simulation and modeling any more. It’s going to be simulation and modeling sitting alongside machine learning and AI, sitting alongside high performance data analytics. And not just the workloads coexisting but also interacting through workflows.”

He offered a hypothetical scenario in which a scientist is conducting real time analytics on a perishable sample, and then adjusting the scientific instrument based on data as it, in real time, comes to the scientist.

“Those are types of workloads we’re focusing on, and those have broad implications for systems architecture,” Lotto said. “Not just in terms of how they coexist and connect through resource managers, but also how we make those frameworks take advantage of the core compute and fabric that sits underneath.”

But Intel’s Magro emphasized the physical limits involved in architectural design and the choices that those limits impose on vendors.

“We all have the same fundamental limits on how large a chip we can build, and that means we’re all forced to decide how to use that real estate,” he said. “So there’s a key tension, which is if I come up with something like a dedicated Tensor engine that’s wonderful and perfect for machine learning and I dedicate an area to that, by construction I’m harming the rest of HPC. So what we need to do is find the right balance of what will benefit the most from deep integration, what will be on a motherboard and what can be at the other end of the fabric. That’s where a lot of the tension is.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This