Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

By John Russell

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific research to create a rapidly deployable ‘cross-disciplinary Data CyberInfrastructure’ dubbed xDCI. Funded in part by NSF, and quite far along in its first two test cases, xDCI could become a powerful enabler of research in the age of growing datasets and the proliferation of data sources that often turn even small research projects into big data management and analysis challenges.

“xDCI was really driven by our experience working with different groups of scientists and different disciplines. We saw there were many common components needed and there were also sort of unique capabilities needed depending upon the domain. So RENCI has had been putting together these domain-specific cyberinfrastructures for many years,” said xDCI project lead Ashok Krishnamurthy, also deputy director, RENCI.

Ashok Krishnamurthy, deputy director, RENCI

“The idea of xDCI was to have a collection of components that we have experience with and that we know interoperate well. Then, depending upon the particular need of the group that wants to stand up a community data sharing and collaborative analysis facility, we would put these components together into a solution that is particular to that community. We would also work with them in terms of how do you actually take it out into the community and bring other researchers to start using those services.”

Such thinking is in line with RENCI’s mission to be “leader in data science and an essential catalyst for data-driven discoveries leading to better health, a safer environment, and improved economic and business successes.” Certainly expansive goals.

RENCI describes xDCI as a “technology framework that enables their research communities to rapidly deploy robust cyberinfrastructure that can easily ingest, move, share, analyze and archive scientific data in all its varieties.” Besides open source and specific RENCI-deveoped technologies, tools such as Docker and HTCondor are also leveraged by the xDCI team. The specific xDCI stack elements at this writing are bulleted here, and the deployment process sketched out below:

  • iRODS – Open source data management, providing automated data virtualization, data discovery and metadata templates via an integrated rules engine.
  • CyVerse DE – Workflows, apps, and analysis environment.
  • xDCIshare – Data sharing among team members and with the larger community.
  • Jupyter Notebook – Creation and sharing of live code, equations, visualizations and text.
  • Query Arrow – Semantically unified SQL and NoSQL query and update system.
  • DataBridge – Discovery of relevant datasets and “dark” data.
  • SciDAS – Fluid and flexible infrastructure for working with and analyzing large-scale data.

It’s important to note that xDCI offers considerably more than just a set of tools. RENCI is formalizing the effort to help researchers stand up xDCI environments with what it calls a set of “concierge” services. Here is snapshot of concierge services taken from the xDCI web page – bear in mind the process is still taking shape:

  • Technology Concierge – The xDCI Information Technology (IT) Concierge staff will work with your team to move your project from concept to a productive and efficient combination of select xDCI technologies, in effect creating a unique xDCI-based architecture for your project.
  • Software Concierge – The xDCI Software Concierge staff will serve as technical project managers and work with your team to deploy your project on the appropriate cloud infrastructure. Once deployed, they will work with your team to instill sustainable software best practices to ensure efficient and persistent continuation of your project over time.
  • Data Science Concierge – The xDCI Data Science Concierge staff will offer data science expertise in how to extract maximum scientific and community benefit from your deployment of xDCI. These staff are experts in data science analytics and visualization using the latest technologies and methods that will accelerate your community to new levels of achievement.
  • Sustainability Concierge – The xDCI Sustainability Concierge staff will assist in the identification of requirements necessary to support future scenarios including migration to new cloud infrastructure, business plans for identifying future funding models, and identification of technology resulting from use of xDCI which may feed back into xDCI itself.

The BRAIN-I project is the most advanced xDCI pilot; it is essentially a cyberinfrastructure for dealing with large image files and supports work by Jason Stein, an assistant professor in the department of genetics at UNC-Chapel Hill and a researcher at UNC’s Neuroscience Center.

The research itself is fascinating. A few years back, a method for removing lipid (fatty) tissue from the brain was developed. In its place a more transparent gel is placed making a kind of “see-through brain”. The work is with mice. Using light sheet microscopy researchers can scan thin layers or section of the brain. Use of different stains allows highlighting different cell types. Obtaining images this way makes it much easier to align sections and trace neuron paths correctly and to create composite 3D images of the brain. If you do this for a set of bred mice with a particular disease, say Alzheimer’s Disease, you can compare it to images from a set of normal (wild type) mice.

It also turns out, not surprisingly, that handling and processing mouse brain image data is a huge challenge.

“Each of the 3-D images for a mouse brain turns out to be 2-to-4 terabytes and there are multiple images for each experiment. In a typical experiment, they may have bred mice, let’s say 24 bred mice, that have genetic characteristics that they could image. They would have another 24 mice for control wild type mice that they would image. Suddenly for a single experiment you would have several hundred of these images, each of which is 2-4 TB in size. That causes significant problems in terms of data management, in terms of how you do computation on it, how do you analyze on it,” said Krishnamurthy.

Jason Stein, BRAIN-I PI

“The images we are analyzing are 1 micron thick, and a cell is about 10 microns, so we have many images with very detailed resolution,” said Stein. “All that data has to go somewhere, but it can’t fit onto individual hard drives. If you want to share an image with a colleague the process can take days or weeks.”

Enter RENCI and xDCI.

The BRAIN-I system takes the 3D microscopy images and replicates that data onto a server at RENCI that runs the integrated Rule Oriented Data System (iRODS). Once ingested into an iRODS data grid, the data is validated, metadata tags are assigned to it and relevant inputs and processes are documented to provide an historical record of the data and its origins. Using iRODS, each image can be linked to its biological sample, tracked from its creation in the lab through final analysis, and made discoverable and reproducible for future research.

Analysis and visualization tools can be used in the BRAIN-I system thanks to a collaboration with CyVerse, a cyberinfrastructure initiative based at the University of Arizona that offers an easy to use, web-based interface for handling computing and data analysis. Using the CyVerse Discovery Environment (DE), BRAIN-I users can launch analysis codes that are packaged as Docker images. Docker is a platform that packages software into a lightweight container that includes everything needed to run the software and is guaranteed to work the same regardless of who runs it, their location or the type of computer they are using.[i]

xDCI also helped BRAIN-I researchers develop a custom microscopy data ingest workflow. Image analysis takes place on RENCI HPC resources and leverages GPUs there but in principle, an xDCI community could be stood up anywhere and work with its preferred compute resources. RENCI also has access to a duplicate system in the Information Technology Services at UNC that has more GPUs. “We have the two locations but technically we could reach into any place that computing resources are available,” said Krishnamurthy.

RENCI director Stan Ahalt and Krishnamurthy emphasize the longterm goals for xDCI are broad. Think of xDCI as software stack for data-driven science that lets users select what suits their community needs. It’s even possible for experienced users to simply download xDCI components. “That has happened. As an example, the National Cancer Institute is using some of the components to manage their data internally and use them,” said Ahalt.

The use cases vary. The BRAIN-I infrastructure includes automated data ingest, image analysis and analytics, automated data management, data discovery, data publication, and cross-institutional collaboration. For another xDCI pilot – My Health Peace of Mind (MyHPOM) an online system to support sharing advanced health care directives – the primary use cases include document sharing, document versioning, individual and group access controls, comments and ratings on documents, secure storage and archiving, and cross-institutional collaboration.

While these efforts are life sciences centric the intent accommodate any domain. In fact and long those lines, RENCI borrowed work on another NSF-funded project, HydroShare, a physical sciences effort, for use in xDCI. HydroShare[ii] is part of the NSF’s Software Infrastructure for Sustained Innovation (SI2) program; its goal is “to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop, or perform analyses in a distributed computing environment that may include grid, cloud, or high performance computing.”

Ray Idaszak, RENCI HydroShare project lead and co-leader of xDCI, said, “The HydroShare software has about a half million lines of code, required quite a bit of NSF funding, and had ten teams contribute to it. We’re taking that code base and we are generalizing it and we are making it part of the xDCI technology stack. So for example the advanced healthcare project will be based on HydroShare code that has been repurposed so it can serve a completely different orthogonal community.”

NSF funding for the BRAIN-I pilot is scheduled to run for another year and RENCI is seeking additional funding for xDCI. One question is how large should xDCI ambitions be? Much of the user base may end up being in the NC and SC area frequently served by RENCI but, as mentioned by Ahalt, there’s no reason it couldn’t be used widely and perhaps even by commercial entities. RENCI’s core mission[iii] is more academic and includes developing and deploying advanced computing to support research as well as conducting research itself.

Stan Ahalt, director, RENCI

“This idea of doing things as a service is a little bit outside of our wheelhouse however we have sought guidance from our leadership and they are willing to have us at least consider that as a different kind of model. That’s kind of where we’re headed. We don’t necessarily want to claim we’re there,” said Ahalt. “If Exxon, and I am making this up, if Exxon talked to us and asked us to stand up the infrastructure to manage all of their data, I’m not sure we’d be in a position to be able to service that request very quickly, although with some time lag we could start thinking about that. In every case what we are looking for first is a research engagement.”

“If there was a reason why Exxon wanted us to do it and they were also interested in having us look at some of their seismic data, for example, then it is a research engagement. It’s just this pure service model is doable but it’s not the typical thing an academic institution would do.”

Broadly, xDCI is part of the shift in advanced computing that combines HPC and data analytics and deep learning, all of which frequently require different infrastructure capabilities. Efforts to harmonize among them are ongoing, spanning the most demanding efforts such as the U.S. Exascale Computing Project to traditional enterprise systems, cloud computing, and IoT.

“I don’t want to go too far philosophical but I do think that we are entering a new phase of how computation interacts with data and it’s a little bit hard to explain exactly what I am thinking. In the past, HPC, a lot of HPC not all, has focused on most extensive core use, simulation. I think that will continue, but I also think increasingly the simulation will be in the context of newly minted data and by newly minted I mean data that is both incoming because it is being collected by sensors or by other types of surveillance or whatever and data that is discovered as the computation proceeds, so almost as a consequence of steering the computation. I think this ecosystem of data and HPC are going to coexist in some interesting ways,” said Ahalt.

One stark example, noted Ahalt, is the massive computational efforts used to assist in dealing with hurricane Harvey and its aftermath in Texas.

“What if all those were interlinked and you could do some centralized steering among all of those simulations, you know discover where to put bottles of water, how to reroute ships to find alternative ports to offload sugar cane, identify escape routes for individuals. All of these things are at least technically plausible. I think we are increasingly moving to a system that allows us to think about that type of highly interconnected HPC and rich data sources where the programmer may not have said ‘I also need to go find out about the weather in Wisconsin’ because it just happens it’s a feeder to the Mississippi. What I am saying it is an interconnected universe.”

“If you think about knowledge networks, it is not just deep learning although deep learning is also a central part, but it is the literal discovery process of relationships between disparate datasets that is starting to emerge as a force in science.”

[i] Explanation excerpted from RENCI article BRAIN-I project, http://renci.org/news/brain-i-project-uses-renci-cyberinfrastructure-called-xdci-to-manage-brain-microscopy-images/

[ii] The HydroShare project will expand the data sharing capabilities of the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS), a nonprofit research organization representing about 130 U.S. universities and international water science-related organizations.”

[iii] RENCI (Renaissance Computing Institute) develops and deploys advanced technologies to enable research discoveries and practical innovations. RENCI partners with researchers, government, and industry to engage and solve the problems that affect North Carolina, our nation, and the world. An institute of the University of North Carolina at Chapel Hill, RENCI was launched in 2004 as a collaboration involving UNC Chapel Hill, Duke University, and North Carolina State University.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SCA23: Pawsey’s Mark Stickells on Sustainable Australian Supercomputing

March 17, 2023

“While the need for supercomputing is great, we have, in my view, reached a tipping point,” said Mark Stickells, executive director of Australia’s Pawsey Supercomputing Centre, as he opened his keynote (“Energy E Read more…

Optical I/O Technology Needed for Zettascale, Say Top Chipmakers

March 16, 2023

Optical I/O is being singled out by top companies to push computing beyond exascale and into zettascale. The technology was singled out in a recent speech by AMD CEO Lisa Su as a critical technology to reach zettascale c Read more…

Tasty CHIPS – New MEC Program to Expand US Prototyping Capabilities Gains Steam

March 16, 2023

Sometime later this year, perhaps around July, the Department of Defense is expected to announce the sites and focus of up to nine hubs associated with the Microelectronics Commons (MEC) program. Funded and broadly descr Read more…

2023 Winter Classic: Mentor Interview, HPE

March 14, 2023

In our most recent update, “Triumph and Tragedy with HPL/HPCG”, we detailed how our dozen 2023 Winter Classic Invitational cluster competition teams dealt with their Linpack/HPCG module, mentored by HPE. In this episode of our incredibly popular 2023 Winter Classic Studio Update Show, we... Read more…

Leibniz QIC’s Mission to Coax Qubits and Bits to Work Together

March 14, 2023

Four years after passing the U.S. National Quantum Initiative Act and decades after early quantum development and commercialization efforts started – think D-Wave Systems and IBM, for example – the U.S. quantum lands Read more…

AWS Solution Channel

Shutterstock 1679096101

Building a 4x faster and more scalable algorithm using AWS Batch for Amazon Logistics

Amazon Logistics’ science team created an algorithm to improve the efficiency of their supply-chain by improving planning decisions. Initially the algorithm was implemented in a sequential way using a monolithic architecture executed on a single high performance computational node on AWS Cloud. Read more…

 

Get the latest on AI innovation at NVIDIA GTC

Join Microsoft at NVIDIA GTC, a free online global technology conference, March 20 – 23 to learn how organizations of any size can power AI innovation with purpose-built cloud infrastructure from Microsoft. Read more…

Pawsey Supercomputing Targets Detailed Regional Climate Projections

March 13, 2023

The Pawsey Supercomputing Centre in Australia is putting its shiny new Setonix supercomputer (ranked fourth on the most recent Top500 list) to work on an important climate change research project. The project, led by Jat Read more…

SCA23: Pawsey’s Mark Stickells on Sustainable Australian Supercomputing

March 17, 2023

“While the need for supercomputing is great, we have, in my view, reached a tipping point,” said Mark Stickells, executive director of Australia’s Pawsey Read more…

Optical I/O Technology Needed for Zettascale, Say Top Chipmakers

March 16, 2023

Optical I/O is being singled out by top companies to push computing beyond exascale and into zettascale. The technology was singled out in a recent speech by AM Read more…

Tasty CHIPS – New MEC Program to Expand US Prototyping Capabilities Gains Steam

March 16, 2023

Sometime later this year, perhaps around July, the Department of Defense is expected to announce the sites and focus of up to nine hubs associated with the Micr Read more…

Leibniz QIC’s Mission to Coax Qubits and Bits to Work Together

March 14, 2023

Four years after passing the U.S. National Quantum Initiative Act and decades after early quantum development and commercialization efforts started – think D- Read more…

Intel Hopes to Stop Server Beating from AMD Next Year

March 13, 2023

After getting bruised in servers by AMD, Intel hopes to stop the bleeding in the server market with next year's chip offerings. The difference-making products will be Sierra Forest and Granite Rapids, which are due out in 2024, said Dave Zinsner, chief financial officer at Intel, last week at the Morgan Stanley Technology, Media and Telecom conference. Read more…

White House Budget Request Includes Funding for Leadership-Class Computing Facility

March 10, 2023

The U.S. government is dedicating a record amount of $25 billion as part of the 2024 budget to emerging technologies as the country looks to counter the technology threat from China. The budget includes billions of dollars earmarked to boost the supercomputing infrastructure, semiconductors, and cutting-edge technologies such as artificial intelligence and quantum computing. The technology... Read more…

Inside NCSA’s Nightingale Cluster, Designed for Sensitive Data

March 10, 2023

The emergence of Covid in 2020 saw an explosion in HPC-powered health research. As the pandemic raged on, though, one limiting factor became increasingly clear: Read more…

Top HPC Players: It’s Time to Get Serious About Security

March 9, 2023

Time’s up: nearly everyone agrees it’s about time to become serious about bringing security safeguards to high-performance computing systems, which has been Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire