Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

By Jan Rowell

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work in stockpile science and other critical fields.

But a chance conversation brought up the possibility of a career jump, and one thing led to another.

Trish Damkroger

Today, Damkroger is Vice President of Intel’s Data Center Group and General Manager of its Technical Computing Initiative. Her work helps shape Intel’s high-performance computing (HPC) products and services for the technical market segment. Under that umbrella are the next-generation platform technologies and frameworks that will take Intel toward exascale and advance the convergence of traditional HPC, big data, and artificial intelligence workloads.

Along with her new job, Damkroger and her husband have moved to Oregon and joined the state’s $3.35 billion wine and grape industry. He recently retired, and she commutes to work from their 12-acre winery on Bald Peak, 20 miles or so south of Intel’s Hillsboro facilities. The two met at an executive coaching program run by the University of California, Berkeley’s Haas School of Business.

Damkroger is also a certified coach and a strong advocate for women in science, technology, engineering, and math (STEM). She has played leadership roles in the industry’s annual Supercomputing Conference for more than a decade. She chaired SC14—the year of HPC Matters—as well as heading the SC15 Steering Committee, and leading the SC16 Diverse HPC Workforce Committee. She’s signed on as Vice Chair of SC18.

Trish, you’re very well known in the industry, but I wonder if you could tell us a bit about your background and career path. What were some of the steps that led you to where you are today?

My dad is an electrical engineer. I had an older brother and a younger brother, and when we were growing up, the expectation was always that we would go to college, we could go to any state school we wanted, and we could be any kind of engineer. Those were our choices.

Of course, I thought that was awful, but now, with my own kids, I sometimes think it would have been good to give them a little more clarity, a few more guard rails—one of them is in computer engineering, and the other is still figuring out his passion. In any case, I chose electrical engineering graduating from Cal Poly. My older brother is a computer engineer, and my younger brother is a mechanical engineer.

When I started out, I was fascinated by the Six Million Dollar Man and Bionic Woman television shows. I wanted to do robotics, and create prostheses that connected to the brain, and make that whole thing work. But I was a little before my time, and the programs to do that really weren’t there.

After graduation, I worked full time at Hewlett-Packard and got my Master’s at Stanford studying AI and neural networks, which were in their infancy. That’s always been a passion for me—to figure out how the brain and body work together and how we can make prosthetics that mimic real limbs. It’s cool to see that coming to fruition now.

So you had worked at HP?  

Yes. I left HP to marry my husband, who lived in Livermore, California and I took a job with Sandia National Laboratories. I worked at Sandia for 10 years, and left there in 2000 to manage a product line for an IT service management company.

After 9/11, I wanted to return to the national security sector. I missed the labs and the national security mission. Plus the company I worked for was relocating and I was not interested in moving.

So I went to Lawrence Livermore, and I loved it, and I never expected to leave. I had worked my way up the organizational ladder and was probably in the last position I would have at the laboratory—and I realized I didn’t want to do what I was doing for another 10 years.

I came to Intel because it’s a chance to do something totally different. I love new challenges. I love to learn new things, and I have more chances to do that at Intel. It’s a completely different mindset and a completely new skillset to learn. I feel like I could spend decades here and continue to learn and grow.

Intel is in the middle of everything. It’s just a tremendously exciting place to be.

How did you make the move to Intel? Were you recruited? Were you job hunting?

Not job hunting at all. I ran into Debra Goldfarb [formerly of Microsoft and now Intel’s Senior Director of Market Intelligence] at SC15, and Deb asked if I was attending a women’s recruiting event Intel was putting on. I was already booked, and wasn’t looking to change jobs, so I didn’t attend. I made one of those, “If the right job comes up, keep me in mind” comments, but I wasn’t that serious—it was more in a spirit of not wanting to close doors.

Well, Deb set up a dinner meeting for me with Diane Bryant [president of the Intel Data Center Group], and I loved Diane. I mean, who doesn’t love Diane? We connected. She pointed out that I was passionate when I talked about all the things I was doing outside my job, with women and STEM, with SC. But, she said, “I don’t hear that same passion when you talk about your work.”

She was right, and it was a real “Wow” moment. It made me aware and got me thinking.

Has the Intel culture surprised you in any ways? Is it different from what you expected?

I’ll share a story. At Livermore, I had a beautiful office and my own conference room. On my first day at Intel, they walked me to my office, which is a small cube, and I asked, “Is this temporary?” But Intel being very egalitarian, they said, “No, everyone has a cube. BK—CEO Brian Krzanich—has a cube.”

I knew Intel was very egalitarian, and I think it’s a good thing. I like that philosophy. It’s a part of the culture going back to [Bob] Noyce and [Gordon] Moore. But the cube was a surprise.

People warned me about the pace. I’ve always worked hard and long hours, so that hasn’t changed, but being in a worldwide company is different. I have lots of early morning and evening calls. Intel’s business is truly global, and it’s 24/7. You’re dealing with China, with Europe—you have to be available. I knew about it intellectually, but it’s different when you’re actually doing the 6 am and 8 pm calls.

Another thing I love about Intel, and it’s huge, is how open everyone has been. They’ve been very welcoming, very willing to throw me in the middle of everything very quickly, and have the confidence in me that I can represent Intel all over the world. I love it. It shows the trust they have in their people.

You’re an advocate for diversity in STEM, and I know Intel is out front on this issue.  Why is diversity so important?

The real importance of diversity in HPC is that we need more people to go into tech fields. Period. Demand is growing, and we can’t meet it with only white men. The other point is that we’re selling to a diverse market. If we’re not engineering for that diversity, we’re going to lose. Everybody loses.

I’m very supportive of women in STEM. I’m continuing to push that, and to coach women who are in male-dominated fields.

You’ve focused industry attention on why HPC matters. Could you talk a bit about why sustained federal investments in HPC are so crucial?

My one-sentence answer is that HPC is absolutely essential to national competitiveness. China recognizes this. China expects to be at exascale in 2020. They’re getting there first because they’re making the investments. They’re developing indigenous technologies, and seeing HPC as a core element of competitiveness.

HPC is important because it is the way we are going to solve problems in every field. If we want the US to be at the forefront of innovation, we have to continue to invest. If we aren’t making those upstream investments to drive HPC innovation, we will lose our competitive edge.

That’s manufacturing and financial modeling and drug discovery. It’s autonomous driving and cognitive computing and bulletproof cyber security. It’s curing cancer, managing the electrical grid and safeguarding the nuclear arsenal. It’s sustainable agriculture and precision medicine.

Our digital infrastructure is just as important as our highways and airports. We need all hands on deck to help the government’s policymakers and funders understand HPC’s importance and why we need to push forward. We have to expand the capacity to support the nation’s critical science and technology research—DOE systems are at greater than 90 percent capacity, and that’s hard to keep up because you have to bring the systems down for maintenance.

We need to educate funders and decision makers about the ways government investment funds the full ecosystem—the labs and universities to build the large machines, conduct the research, do the applied math for the models, develop the applications and algorithms, explore the new technologies, and do all the things that will be in everyday computing environments 5-10 years out, and in your smart phone and wearables after that. If we stop those investments, the middle of the pyramid eventually collapses and the innovation stops. That’s an outcome no one wants.

About the Author

Jan Rowell writes about technology trends and impacts in HPC, healthcare, life sciences, and other industries.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

HPC Career Notes: December 2021 Edition

December 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

AWS Solution Channel

Running a 3.2M vCPU HPC Workload on AWS with YellowDog

Historically, advances in fields such as meteorology, healthcare, and engineering, were achieved through large investments in on-premises computing infrastructure. Upfront capital investment and operational complexity have been the accepted norm of large-scale HPC research. Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire