Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

By Jan Rowell

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work in stockpile science and other critical fields.

But a chance conversation brought up the possibility of a career jump, and one thing led to another.

Trish Damkroger

Today, Damkroger is Vice President of Intel’s Data Center Group and General Manager of its Technical Computing Initiative. Her work helps shape Intel’s high-performance computing (HPC) products and services for the technical market segment. Under that umbrella are the next-generation platform technologies and frameworks that will take Intel toward exascale and advance the convergence of traditional HPC, big data, and artificial intelligence workloads.

Along with her new job, Damkroger and her husband have moved to Oregon and joined the state’s $3.35 billion wine and grape industry. He recently retired, and she commutes to work from their 12-acre winery on Bald Peak, 20 miles or so south of Intel’s Hillsboro facilities. The two met at an executive coaching program run by the University of California, Berkeley’s Haas School of Business.

Damkroger is also a certified coach and a strong advocate for women in science, technology, engineering, and math (STEM). She has played leadership roles in the industry’s annual Supercomputing Conference for more than a decade. She chaired SC14—the year of HPC Matters—as well as heading the SC15 Steering Committee, and leading the SC16 Diverse HPC Workforce Committee. She’s signed on as Vice Chair of SC18.

Trish, you’re very well known in the industry, but I wonder if you could tell us a bit about your background and career path. What were some of the steps that led you to where you are today?

My dad is an electrical engineer. I had an older brother and a younger brother, and when we were growing up, the expectation was always that we would go to college, we could go to any state school we wanted, and we could be any kind of engineer. Those were our choices.

Of course, I thought that was awful, but now, with my own kids, I sometimes think it would have been good to give them a little more clarity, a few more guard rails—one of them is in computer engineering, and the other is still figuring out his passion. In any case, I chose electrical engineering graduating from Cal Poly. My older brother is a computer engineer, and my younger brother is a mechanical engineer.

When I started out, I was fascinated by the Six Million Dollar Man and Bionic Woman television shows. I wanted to do robotics, and create prostheses that connected to the brain, and make that whole thing work. But I was a little before my time, and the programs to do that really weren’t there.

After graduation, I worked full time at Hewlett-Packard and got my Master’s at Stanford studying AI and neural networks, which were in their infancy. That’s always been a passion for me—to figure out how the brain and body work together and how we can make prosthetics that mimic real limbs. It’s cool to see that coming to fruition now.

So you had worked at HP?  

Yes. I left HP to marry my husband, who lived in Livermore, California and I took a job with Sandia National Laboratories. I worked at Sandia for 10 years, and left there in 2000 to manage a product line for an IT service management company.

After 9/11, I wanted to return to the national security sector. I missed the labs and the national security mission. Plus the company I worked for was relocating and I was not interested in moving.

So I went to Lawrence Livermore, and I loved it, and I never expected to leave. I had worked my way up the organizational ladder and was probably in the last position I would have at the laboratory—and I realized I didn’t want to do what I was doing for another 10 years.

I came to Intel because it’s a chance to do something totally different. I love new challenges. I love to learn new things, and I have more chances to do that at Intel. It’s a completely different mindset and a completely new skillset to learn. I feel like I could spend decades here and continue to learn and grow.

Intel is in the middle of everything. It’s just a tremendously exciting place to be.

How did you make the move to Intel? Were you recruited? Were you job hunting?

Not job hunting at all. I ran into Debra Goldfarb [formerly of Microsoft and now Intel’s Senior Director of Market Intelligence] at SC15, and Deb asked if I was attending a women’s recruiting event Intel was putting on. I was already booked, and wasn’t looking to change jobs, so I didn’t attend. I made one of those, “If the right job comes up, keep me in mind” comments, but I wasn’t that serious—it was more in a spirit of not wanting to close doors.

Well, Deb set up a dinner meeting for me with Diane Bryant [president of the Intel Data Center Group], and I loved Diane. I mean, who doesn’t love Diane? We connected. She pointed out that I was passionate when I talked about all the things I was doing outside my job, with women and STEM, with SC. But, she said, “I don’t hear that same passion when you talk about your work.”

She was right, and it was a real “Wow” moment. It made me aware and got me thinking.

Has the Intel culture surprised you in any ways? Is it different from what you expected?

I’ll share a story. At Livermore, I had a beautiful office and my own conference room. On my first day at Intel, they walked me to my office, which is a small cube, and I asked, “Is this temporary?” But Intel being very egalitarian, they said, “No, everyone has a cube. BK—CEO Brian Krzanich—has a cube.”

I knew Intel was very egalitarian, and I think it’s a good thing. I like that philosophy. It’s a part of the culture going back to [Bob] Noyce and [Gordon] Moore. But the cube was a surprise.

People warned me about the pace. I’ve always worked hard and long hours, so that hasn’t changed, but being in a worldwide company is different. I have lots of early morning and evening calls. Intel’s business is truly global, and it’s 24/7. You’re dealing with China, with Europe—you have to be available. I knew about it intellectually, but it’s different when you’re actually doing the 6 am and 8 pm calls.

Another thing I love about Intel, and it’s huge, is how open everyone has been. They’ve been very welcoming, very willing to throw me in the middle of everything very quickly, and have the confidence in me that I can represent Intel all over the world. I love it. It shows the trust they have in their people.

You’re an advocate for diversity in STEM, and I know Intel is out front on this issue.  Why is diversity so important?

The real importance of diversity in HPC is that we need more people to go into tech fields. Period. Demand is growing, and we can’t meet it with only white men. The other point is that we’re selling to a diverse market. If we’re not engineering for that diversity, we’re going to lose. Everybody loses.

I’m very supportive of women in STEM. I’m continuing to push that, and to coach women who are in male-dominated fields.

You’ve focused industry attention on why HPC matters. Could you talk a bit about why sustained federal investments in HPC are so crucial?

My one-sentence answer is that HPC is absolutely essential to national competitiveness. China recognizes this. China expects to be at exascale in 2020. They’re getting there first because they’re making the investments. They’re developing indigenous technologies, and seeing HPC as a core element of competitiveness.

HPC is important because it is the way we are going to solve problems in every field. If we want the US to be at the forefront of innovation, we have to continue to invest. If we aren’t making those upstream investments to drive HPC innovation, we will lose our competitive edge.

That’s manufacturing and financial modeling and drug discovery. It’s autonomous driving and cognitive computing and bulletproof cyber security. It’s curing cancer, managing the electrical grid and safeguarding the nuclear arsenal. It’s sustainable agriculture and precision medicine.

Our digital infrastructure is just as important as our highways and airports. We need all hands on deck to help the government’s policymakers and funders understand HPC’s importance and why we need to push forward. We have to expand the capacity to support the nation’s critical science and technology research—DOE systems are at greater than 90 percent capacity, and that’s hard to keep up because you have to bring the systems down for maintenance.

We need to educate funders and decision makers about the ways government investment funds the full ecosystem—the labs and universities to build the large machines, conduct the research, do the applied math for the models, develop the applications and algorithms, explore the new technologies, and do all the things that will be in everyday computing environments 5-10 years out, and in your smart phone and wearables after that. If we stop those investments, the middle of the pyramid eventually collapses and the innovation stops. That’s an outcome no one wants.

About the Author

Jan Rowell writes about technology trends and impacts in HPC, healthcare, life sciences, and other industries.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This