DARPA Pledges Another $300 Million for Post-Moore’s Readiness

By Tiffany Trader

September 14, 2017

Yesterday, the Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s law technologies that will benefit military and commercial users and contribute crucially to national security in the 2025 to 2030 time frame.

First made public in June (see HPCwire coverage here), ERI took shape over the summer as DARPA’s Microsystems Technology Office sought community involvement on the path forward for future progress in electronics. Based on that input, DARPA developed six new programs which are part of the overall larger vision of the Electronic Resurgence Initiative. The six programs are detailed in three Broad Agency Announcements (BAAs) published yesterday on FedBizOpps.gov. Each of the BAAs correlates to one of the ERI research pillars: materials and integration, circuit design, and systems architecture.

Planned investment is in the range of $200 million a year over four years. “ERI Page 3 Investments” refers to research areas that Gordon Moore predicted would become important for future microelectronics progress, cited on page 3 of Moore’s famous 1965 paper, “Cramming More Components onto Integrated Circuits.”

Also joining the ERI portfolio are several existing DARPA programs (including HIVE and CHIPS) as well as the Joint University Microelectronics Program (JUMP), a research effort in basic electronics education co-funded by DARPA and Semiconductor Research Corporation (SRC), an industry consortium based in Durham, N.C.

DARPA says that with the official roll out of the Electronics Resurgence Initiative, it “hopes to open new innovation pathways to address impending engineering and economics challenges that, if left unanswered, could challenge what has been a relentless half-century run of progress in microelectronics technology.”

DARPA is of course referring to the remarkable engine of innovation that is Moore’s law. Gordon Moore’s 1965 observation that transistor densities were doubling at roughly 24-month intervals set the stage for five decades of faster and cheaper microelectronics. But as node feature sizes approach the fundamental limits of physics, the design work and fabrication becomes ever more complex and expensive, jeopardizing the economic benefits of Moore’s dictum.

It’s something of a grand experiment, explained Bill Chappell, director of the Agency’s Microsystems Technology Office (MTO) in a press call, referring to the scale and scope of the Electronics Resurgence Initiative. DARPA has packaged up into one large announcement six different programs (released in three Broad Agency Announcements – BAAs — on FBO.gov). The six different programs will in sum receive $75 million in investment over the next year alone and on the order of $300 million over four years. Like all DARPA programs, the longevity and funding levels of these programs will be tied to performance.

“If we see that we’re getting broad resonance within the commercial industry and within the DoD industry, and unique partnerships are forming and/or unique capabilities are popping up for national defense, it will continue with the expectation or even grow,” said Chappell.

The DoD is finding it increasingly difficult to manufacture and design circuits, partly due to Moore’s law slowdowns and partly due to the scale of designs. “We are victim of our own success in that we have so many transistors available that we now have another problem which is complexity, complexity of manufacturing and complexity of design,” said Chappell. “So whether Moore’s law ends or not, at the DoD, from a niche development perspective we already have a problem on our hands. And we’re sharing that with the commercial world as well; you see a lot of mergers and acquisitions and tumult in the industry as they try to also grapple with some of the similar problems and the manpower required to get a design from concept into a physical product.”

Here’s a rundown on the six programs organized by their research thrust:

Materials and Integration (link)

  • Three Dimensional Monolithic System-on-a-Chip (3DSoC): Develop 3D monolithic technology that will enable > 50X improvement in SoC digital performance at power.
  • Foundations Required for Novel Compute (FRANC): Develop the foundations for assessing and establishing the proof of principle for beyond von Neumann compute topologies enabled by new materials and integration.

Design (link)

  • Intelligent Design of Electronic Assets (IDEA): “No human in the loop” 24-hour layout generation for mixed signal integrated circuits, systems-in-package, and printed circuit boards.
  • Posh Open Source Hardware (POSH): An open source System on Chip (SoC) design and verification eco-system that enables cost effective design of ultra-complex SoCs.

Novel Computing Architectures (link)

  • Software Defined Hardware (SDH): Build runtime reconfigurable hardware and software that enables near ASIC performance without sacrificing programmability for data-intensive algorithms.
  • Domain-Specific System on Chip (DSSoC): Enable rapid development of multiapplication systems through a single programmable device.

Chappell gave additional context for the Software Defined Hardware program, noting that it will look at course-grained reprogrammability specifically for big data programs. “We have the TPU and the GPU for dense problems, for dense searches, and dense matrix manipulation. We have recently started the HIVE program, which does sparse graph search. But the big question that still exists is what if you have a dense and sparse dataset? We don’t have a chip under development or even concepts that are very good at doing both of those types of datasets.”

What DARPA is envisioning is a reprogrammable system, or chip, that is intelligent enough and has an intelligent enough just in time compiler to recognize the data and type of data it needs to operate on and reconfigure itself to the need of that moment. DARPA has done seedlings to demonstrate that it’s feasible but “it’s still a DARPA-hard concept to pull off,” said Chappell.

DARPA will hold a number of Proposers Days to meet with interested researchers. The FRANC program of the Materials and Integration thrust will be run in the form of a webinar on Sept.15 and that thrust’s other program, 3DsoC, will take place at DARPA headquarters in Arlington, Va., on Sept. 22. The Proposers Day for the Architectures thrust’s two programs, DSSoC and SDH, will take place near DARPA headquarters in Arlington, Va., on Sept. 18 and 19, respectively. The Proposers Days for both programs in the Design thrust—IDEA and POSH—will take place on Sept. 22, in Mountain View, Calif. Details about all of these Proposers Day events and how to register are included in this Special Notice, DARPA-SN-17-75, posted on FBO.gov.

Asked about the goals for ERI writ large, Chappell said, “Overall success will look like we’ve invented the ideas that will be part of that 2025 and 2030 electronics community in such a way that both our defense base has better access to technology, better access to IP, better design services and capabilities than they have today because of these relationships that we are trying to build while simultaneously US interests in electronics in regards to economic development, maintaining our dominant global position is secured because of the new ideas that we are creating through these investments.

“These $75 million next year and $300 million over the course of the next four years that we’re planning is for very far-out research which often times is not something that a commercial entity can do because of its speculative nature and/or not something the DoD can do because it isn’t necessarily solving a today problem, but a tomorrow problem.”

DARPA is known for funding high-risk, high-reward R&D with broad commercial impact, helping to invent both the Internet and GPS.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a province in Pavia, Italy), and delivered “as-a-service” via H Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire