DARPA Pledges Another $300 Million for Post-Moore’s Readiness

By Tiffany Trader

September 14, 2017

Yesterday, the Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s law technologies that will benefit military and commercial users and contribute crucially to national security in the 2025 to 2030 time frame.

First made public in June (see HPCwire coverage here), ERI took shape over the summer as DARPA’s Microsystems Technology Office sought community involvement on the path forward for future progress in electronics. Based on that input, DARPA developed six new programs which are part of the overall larger vision of the Electronic Resurgence Initiative. The six programs are detailed in three Broad Agency Announcements (BAAs) published yesterday on FedBizOpps.gov. Each of the BAAs correlates to one of the ERI research pillars: materials and integration, circuit design, and systems architecture.

Planned investment is in the range of $200 million a year over four years. “ERI Page 3 Investments” refers to research areas that Gordon Moore predicted would become important for future microelectronics progress, cited on page 3 of Moore’s famous 1965 paper, “Cramming More Components onto Integrated Circuits.”

Also joining the ERI portfolio are several existing DARPA programs (including HIVE and CHIPS) as well as the Joint University Microelectronics Program (JUMP), a research effort in basic electronics education co-funded by DARPA and Semiconductor Research Corporation (SRC), an industry consortium based in Durham, N.C.

DARPA says that with the official roll out of the Electronics Resurgence Initiative, it “hopes to open new innovation pathways to address impending engineering and economics challenges that, if left unanswered, could challenge what has been a relentless half-century run of progress in microelectronics technology.”

DARPA is of course referring to the remarkable engine of innovation that is Moore’s law. Gordon Moore’s 1965 observation that transistor densities were doubling at roughly 24-month intervals set the stage for five decades of faster and cheaper microelectronics. But as node feature sizes approach the fundamental limits of physics, the design work and fabrication becomes ever more complex and expensive, jeopardizing the economic benefits of Moore’s dictum.

It’s something of a grand experiment, explained Bill Chappell, director of the Agency’s Microsystems Technology Office (MTO) in a press call, referring to the scale and scope of the Electronics Resurgence Initiative. DARPA has packaged up into one large announcement six different programs (released in three Broad Agency Announcements – BAAs — on FBO.gov). The six different programs will in sum receive $75 million in investment over the next year alone and on the order of $300 million over four years. Like all DARPA programs, the longevity and funding levels of these programs will be tied to performance.

“If we see that we’re getting broad resonance within the commercial industry and within the DoD industry, and unique partnerships are forming and/or unique capabilities are popping up for national defense, it will continue with the expectation or even grow,” said Chappell.

The DoD is finding it increasingly difficult to manufacture and design circuits, partly due to Moore’s law slowdowns and partly due to the scale of designs. “We are victim of our own success in that we have so many transistors available that we now have another problem which is complexity, complexity of manufacturing and complexity of design,” said Chappell. “So whether Moore’s law ends or not, at the DoD, from a niche development perspective we already have a problem on our hands. And we’re sharing that with the commercial world as well; you see a lot of mergers and acquisitions and tumult in the industry as they try to also grapple with some of the similar problems and the manpower required to get a design from concept into a physical product.”

Here’s a rundown on the six programs organized by their research thrust:

Materials and Integration (link)

  • Three Dimensional Monolithic System-on-a-Chip (3DSoC): Develop 3D monolithic technology that will enable > 50X improvement in SoC digital performance at power.
  • Foundations Required for Novel Compute (FRANC): Develop the foundations for assessing and establishing the proof of principle for beyond von Neumann compute topologies enabled by new materials and integration.

Design (link)

  • Intelligent Design of Electronic Assets (IDEA): “No human in the loop” 24-hour layout generation for mixed signal integrated circuits, systems-in-package, and printed circuit boards.
  • Posh Open Source Hardware (POSH): An open source System on Chip (SoC) design and verification eco-system that enables cost effective design of ultra-complex SoCs.

Novel Computing Architectures (link)

  • Software Defined Hardware (SDH): Build runtime reconfigurable hardware and software that enables near ASIC performance without sacrificing programmability for data-intensive algorithms.
  • Domain-Specific System on Chip (DSSoC): Enable rapid development of multiapplication systems through a single programmable device.

Chappell gave additional context for the Software Defined Hardware program, noting that it will look at course-grained reprogrammability specifically for big data programs. “We have the TPU and the GPU for dense problems, for dense searches, and dense matrix manipulation. We have recently started the HIVE program, which does sparse graph search. But the big question that still exists is what if you have a dense and sparse dataset? We don’t have a chip under development or even concepts that are very good at doing both of those types of datasets.”

What DARPA is envisioning is a reprogrammable system, or chip, that is intelligent enough and has an intelligent enough just in time compiler to recognize the data and type of data it needs to operate on and reconfigure itself to the need of that moment. DARPA has done seedlings to demonstrate that it’s feasible but “it’s still a DARPA-hard concept to pull off,” said Chappell.

DARPA will hold a number of Proposers Days to meet with interested researchers. The FRANC program of the Materials and Integration thrust will be run in the form of a webinar on Sept.15 and that thrust’s other program, 3DsoC, will take place at DARPA headquarters in Arlington, Va., on Sept. 22. The Proposers Day for the Architectures thrust’s two programs, DSSoC and SDH, will take place near DARPA headquarters in Arlington, Va., on Sept. 18 and 19, respectively. The Proposers Days for both programs in the Design thrust—IDEA and POSH—will take place on Sept. 22, in Mountain View, Calif. Details about all of these Proposers Day events and how to register are included in this Special Notice, DARPA-SN-17-75, posted on FBO.gov.

Asked about the goals for ERI writ large, Chappell said, “Overall success will look like we’ve invented the ideas that will be part of that 2025 and 2030 electronics community in such a way that both our defense base has better access to technology, better access to IP, better design services and capabilities than they have today because of these relationships that we are trying to build while simultaneously US interests in electronics in regards to economic development, maintaining our dominant global position is secured because of the new ideas that we are creating through these investments.

“These $75 million next year and $300 million over the course of the next four years that we’re planning is for very far-out research which often times is not something that a commercial entity can do because of its speculative nature and/or not something the DoD can do because it isn’t necessarily solving a today problem, but a tomorrow problem.”

DARPA is known for funding high-risk, high-reward R&D with broad commercial impact, helping to invent both the Internet and GPS.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This