DARPA Pledges Another $300 Million for Post-Moore’s Readiness

By Tiffany Trader

September 14, 2017

Yesterday, the Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s law technologies that will benefit military and commercial users and contribute crucially to national security in the 2025 to 2030 time frame.

First made public in June (see HPCwire coverage here), ERI took shape over the summer as DARPA’s Microsystems Technology Office sought community involvement on the path forward for future progress in electronics. Based on that input, DARPA developed six new programs which are part of the overall larger vision of the Electronic Resurgence Initiative. The six programs are detailed in three Broad Agency Announcements (BAAs) published yesterday on FedBizOpps.gov. Each of the BAAs correlates to one of the ERI research pillars: materials and integration, circuit design, and systems architecture.

Planned investment is in the range of $200 million a year over four years. “ERI Page 3 Investments” refers to research areas that Gordon Moore predicted would become important for future microelectronics progress, cited on page 3 of Moore’s famous 1965 paper, “Cramming More Components onto Integrated Circuits.”

Also joining the ERI portfolio are several existing DARPA programs (including HIVE and CHIPS) as well as the Joint University Microelectronics Program (JUMP), a research effort in basic electronics education co-funded by DARPA and Semiconductor Research Corporation (SRC), an industry consortium based in Durham, N.C.

DARPA says that with the official roll out of the Electronics Resurgence Initiative, it “hopes to open new innovation pathways to address impending engineering and economics challenges that, if left unanswered, could challenge what has been a relentless half-century run of progress in microelectronics technology.”

DARPA is of course referring to the remarkable engine of innovation that is Moore’s law. Gordon Moore’s 1965 observation that transistor densities were doubling at roughly 24-month intervals set the stage for five decades of faster and cheaper microelectronics. But as node feature sizes approach the fundamental limits of physics, the design work and fabrication becomes ever more complex and expensive, jeopardizing the economic benefits of Moore’s dictum.

It’s something of a grand experiment, explained Bill Chappell, director of the Agency’s Microsystems Technology Office (MTO) in a press call, referring to the scale and scope of the Electronics Resurgence Initiative. DARPA has packaged up into one large announcement six different programs (released in three Broad Agency Announcements – BAAs — on FBO.gov). The six different programs will in sum receive $75 million in investment over the next year alone and on the order of $300 million over four years. Like all DARPA programs, the longevity and funding levels of these programs will be tied to performance.

“If we see that we’re getting broad resonance within the commercial industry and within the DoD industry, and unique partnerships are forming and/or unique capabilities are popping up for national defense, it will continue with the expectation or even grow,” said Chappell.

The DoD is finding it increasingly difficult to manufacture and design circuits, partly due to Moore’s law slowdowns and partly due to the scale of designs. “We are victim of our own success in that we have so many transistors available that we now have another problem which is complexity, complexity of manufacturing and complexity of design,” said Chappell. “So whether Moore’s law ends or not, at the DoD, from a niche development perspective we already have a problem on our hands. And we’re sharing that with the commercial world as well; you see a lot of mergers and acquisitions and tumult in the industry as they try to also grapple with some of the similar problems and the manpower required to get a design from concept into a physical product.”

Here’s a rundown on the six programs organized by their research thrust:

Materials and Integration (link)

  • Three Dimensional Monolithic System-on-a-Chip (3DSoC): Develop 3D monolithic technology that will enable > 50X improvement in SoC digital performance at power.
  • Foundations Required for Novel Compute (FRANC): Develop the foundations for assessing and establishing the proof of principle for beyond von Neumann compute topologies enabled by new materials and integration.

Design (link)

  • Intelligent Design of Electronic Assets (IDEA): “No human in the loop” 24-hour layout generation for mixed signal integrated circuits, systems-in-package, and printed circuit boards.
  • Posh Open Source Hardware (POSH): An open source System on Chip (SoC) design and verification eco-system that enables cost effective design of ultra-complex SoCs.

Novel Computing Architectures (link)

  • Software Defined Hardware (SDH): Build runtime reconfigurable hardware and software that enables near ASIC performance without sacrificing programmability for data-intensive algorithms.
  • Domain-Specific System on Chip (DSSoC): Enable rapid development of multiapplication systems through a single programmable device.

Chappell gave additional context for the Software Defined Hardware program, noting that it will look at course-grained reprogrammability specifically for big data programs. “We have the TPU and the GPU for dense problems, for dense searches, and dense matrix manipulation. We have recently started the HIVE program, which does sparse graph search. But the big question that still exists is what if you have a dense and sparse dataset? We don’t have a chip under development or even concepts that are very good at doing both of those types of datasets.”

What DARPA is envisioning is a reprogrammable system, or chip, that is intelligent enough and has an intelligent enough just in time compiler to recognize the data and type of data it needs to operate on and reconfigure itself to the need of that moment. DARPA has done seedlings to demonstrate that it’s feasible but “it’s still a DARPA-hard concept to pull off,” said Chappell.

DARPA will hold a number of Proposers Days to meet with interested researchers. The FRANC program of the Materials and Integration thrust will be run in the form of a webinar on Sept.15 and that thrust’s other program, 3DsoC, will take place at DARPA headquarters in Arlington, Va., on Sept. 22. The Proposers Day for the Architectures thrust’s two programs, DSSoC and SDH, will take place near DARPA headquarters in Arlington, Va., on Sept. 18 and 19, respectively. The Proposers Days for both programs in the Design thrust—IDEA and POSH—will take place on Sept. 22, in Mountain View, Calif. Details about all of these Proposers Day events and how to register are included in this Special Notice, DARPA-SN-17-75, posted on FBO.gov.

Asked about the goals for ERI writ large, Chappell said, “Overall success will look like we’ve invented the ideas that will be part of that 2025 and 2030 electronics community in such a way that both our defense base has better access to technology, better access to IP, better design services and capabilities than they have today because of these relationships that we are trying to build while simultaneously US interests in electronics in regards to economic development, maintaining our dominant global position is secured because of the new ideas that we are creating through these investments.

“These $75 million next year and $300 million over the course of the next four years that we’re planning is for very far-out research which often times is not something that a commercial entity can do because of its speculative nature and/or not something the DoD can do because it isn’t necessarily solving a today problem, but a tomorrow problem.”

DARPA is known for funding high-risk, high-reward R&D with broad commercial impact, helping to invent both the Internet and GPS.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This