Kathy Yelick Charts the Promise and Progress of Exascale Science

By Tiffany Trader

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire.

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire.

The timing of Yelick’s talk is timely as one year ago, on Sept. 7, 2016,  the U.S. Department of Energy made the first in a series of announcements about funding support for various components of the Exascale Computing Program, or ECP. The ECP was established to develop the exascale applications, system software, and hardware innovations necessary to enable the delivery of capable exascale systems.

Yelick is the Associate Laboratory Director for Computing Sciences, which includes the National Energy Research Scientific Computing Center (NERSC), the Energy Sciences Network (ESnet) and the Computational Research Division, which does research in applied mathematics, computer science, data science, and computational science. Yelick is also a professor of Electrical Engineering and Computer Sciences at the University of California at Berkeley. Her research is in parallel programming languages, compilers, algorithms and automatic performance tuning. Yelick was director of NERSC from 2008 to 2012. She was recently elected to the National Academy of Engineering (NAE) and the American Association of Arts and Sciences, and is an ACM Fellow and recipient of the ACM/IEEE Ken Kennedy and Athena awards.

HPCwire: What scientific applications necessitate the development of exascale?

Kathy Yelick: There are more than 20 ECP applications that, broadly speaking, fall into the areas of national security, energy, the environment, manufacturing, infrastructure, healthcare and scientific discovery. Associated with each is an exascale challenge problem—something that requires around 50 times the computational power of current systems. They include a diverse set of problems such as a 100-year simulation of the integrity of fields where petroleum is extracted or energy waste is stored; a predictive simulation of an urban area that includes buildings, water quality and electricity demands; and detailed simulations of the universe to better explain and interpret the latest observational data. There are also applications analyzing data at an unprecedented scale, from the newest light sources to complex environmental genomes, and cancer research data that includes patient genetics, tumor genomes, molecular simulations and clinical data.

These applications will help us develop cleaner energy, improve the resilience of our infrastructure, develop materials for extreme environments, adapt to changes in the water cycle, understand the origin of elements in the universe, and develop smaller, more powerful accelerators for use in medicine and industry. And as a California resident, I’m interested in the work to better assess the risks posed by earthquakes.

These projects are not simply scaling or porting old codes to new machines, but each of represents a new predictive or analytic capability. Several are completely new to high performance computing, and others add new capabilities to existing codes, integrating new physical models that are often at widely different space or time scales than the original code.

HPCwire: How do you respond to concerns that exascale programs are too focused on the hardware or will only benefit so-called hero codes?

Yelick: That’s an interesting statement in that ECP is currently committed to funding over $200 million this year to support applications development, software and hardware R&D in partnerships with vendors. There will be substantial machine acquisitions outside the project, but the project itself is directed at these other parts of the ecosystem. As I noted earlier, the application portfolio is not directed at a few hero codes, but represents a broad range of applications from both traditional and non-traditional HPC problem domains.

The NERSC facility is not slated to get one of the first exascale systems, but we expect to provide such a capability a few of years later with the NERSC-10 acquisition. Similarly, NSF is planning a leadership scale acquisition in roughly the same time frame, which should also benefit from the ECP investments. The investments made now in exascale R&D and software will benefit all exascale systems, and lessons learned on the initial applications will inform other teams. NERSC has experience going back to the introduction of massive parallelism in helping the community make such a transition and has already started preparing the user community through its NERSC Exascale Science Applications Program, NESAP. NESAP has 20 user code teams, some of which overlap with the ECP applications, partnered with NERSC and the vendors to prepare their codes for exascale.

HPCwire: What is your perspective on the progress that is being made toward exascale, given the challenges (power, concurrency, fault-tolerance, applications)?

Yelick: We are making great progress in our applications, which were the subject of a recent internal project review. Several of the application teams have found new levels of concurrency and memory optimizations to deal with the most recent DOE HPC system, the NERSC Cori machine with its 68-core nodes and high-bandwidth memory. Much of the ECP software and programming technology can be leveraged across multiple applications, both within ECP and beyond. For example, the Adaptive Mesh Refinement Co-Design Center (AMReX) which was launched last November is releasing its new framework to support the development of block-structured AMR algorithms at the end of September. At least five of the ECP application projects are using AMR, allowing them to efficiently simulate fine-resolution features.

Some of the R&D projects are also getting a better handle on the type of failures that will be important in practice. The hardware R&D on processor and memory designs have made great strides in reducing total system power, but it remains a challenge, and the resulting architecture innovations continue to raise software challenges for the rest of the team. Overall, we’re seeing the benefit of collaborations across the different parts of the project, incorporation of previous research results, and the need for even tighter integration across these parts.

HPCwire: There’s an expectation that exascale supercomputers will need to support simulation, big data and machine learning workloads, which currently have distinct software stacks. What are your thoughts on this challenge? Will container technology be helpful?

Yelick: Containers can certainly help support a variety of software stacks, including today’s analytics stack, and NERSC’s Shifter technology has helped bring this to its HPC systems. But I think we’ll also see new software developed for machine learning to achieve much higher performance levels and move them over to lighter-weight software. Porting Spark or TensorFlow to an exascale system will bring new user communities, but may not produce the most efficient use of these machines.

It’s somewhat ironic that training for deep learning probably has more similarity to the HPL benchmark than many of the simulations that are run today, although requirements for numerical precision are different and likely to lead to some architectural divergence. The algorithms in this space are evolving rapidly and projects like CAMERA (the Center for Advanced Mathematics for Energy Research Applications) are developing methods for analyzing data from some of the large DOE experimental facilities. Some of our policies around use of HPC need to change to better fit data workloads, both to handle on-demand computing for real-time data streams and to address the long-term needs for data provenance and sharing. The idea of receiving HPC allocations for a year at a time, and having jobs that sit in queues, will not work for these problems. NERSC is exploring all of these topics, such as with their recent 15-petaflop deep learning run described in a paper [and covered by HPCwire] by a team from NERSC, Intel and Stanford; a pilot for real-time job queues; automated metadata analysis through machine learning; and their NESAP for Data partnerships.

HPCwire: Speaking of machine learning and adapting codes to exascale, you’re the PI for the ECP applications project “Exascale Solutions for Microbiome Analysis,’ which also involves Los Alamos National Lab and DOE’s Joint Genome Institute. Can you tell us more about that project and how you’re tailoring Meraculous for exascale systems?

Yelick: The ExaBiome project is developing scalable methods for genome analysis, especially the analysis of microorganisms, which are central players in the environment, food production and human health. They occur naturally as “microbiomes,” cooperative communities of microbes, which means that sequencing an environmental sample produces a metagenome with thousands or even millions of individual species mixed together. Many of the species cannot be cultured in a lab and may never have been seen before—JGI researchers have even discovered new life forms from such analyses. To help understand the function of various genes, Aydin Buluc and Ariful Azad in the Computational Research Division have developed a new high performance clustering algorithm called HipMCL. Such bioinformatics analysis has often been viewed as requiring shared memory machines with large memory, but we have found that using clever parallel algorithms and HPC systems with low-latency interconnects and lightweight communication, we can scale these algorithms to run across petascale systems.

The algorithms are very different than most physical simulations because they involve graph walks, hash tables and highly unstructured sparse matrices. The de novo metagenome assembly challenge is to construct the individual genomes from the mixture of fragments produced by sequencers; it is based on an assembler called Meraculous, developed by Dan Rokhsar’s group at JGI and UC Berkeley. As part of the ExaBiome project we’ve built a scalable implementation extended to handle metagenomes called MetaHipMer (Metagenome High Performance Meraculous). These tools will enable the analysis of very complex environmental samples, and analysis over time, to understand how the microbial community changes with the rest of the environment and influences that environment.

The algorithms also reflect an important workload for future exascale machines. As described in our recent EuroPar 2017 paper, they require fine-grained communication and therefore can take advantage of high injection rates, low latency and remote atomic operations (e.g., remotely incrementing a counter) in the networks. The computation is entirely dominated by these operations and local string alignment algorithms, so there’s no floating point in the entire application. It’s important that we keep all of these workloads in mind as we push towards exasacle, to ensure the machines are capable of graph problems, bioinformatics and other highly irregular computational patterns that may be of interest outside of science and engineering communities.

HPCwire: What are some of the other key points from your talk that you’d like to share with our readers?

Yelick: First, the science breakthroughs from exascale programs will rely not just on faster machines, but also on the development of new application capabilities that build on prior research in mathematics, computer science and data science. We need to keep this research pipeline engaged over the next few years, so that we continue to have a vibrant research community to produce the critical methods and techniques that we will need to solve computational and data science challenges beyond exascale.

In that same vein, we shouldn’t think of exascale as an end goal, but rather as another point in the continuum of scientific computing. While much of DOE’s computing effort is currently devoted to exascale, we are already looking beyond to specialized digital architectures, quantum and neuromorphic computing, and new models of scientific investigation and collaboration for addressing future challenges.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This