Kathy Yelick Charts the Promise and Progress of Exascale Science

By Tiffany Trader

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire.

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire.

The timing of Yelick’s talk is timely as one year ago, on Sept. 7, 2016,  the U.S. Department of Energy made the first in a series of announcements about funding support for various components of the Exascale Computing Program, or ECP. The ECP was established to develop the exascale applications, system software, and hardware innovations necessary to enable the delivery of capable exascale systems.

Yelick is the Associate Laboratory Director for Computing Sciences, which includes the National Energy Research Scientific Computing Center (NERSC), the Energy Sciences Network (ESnet) and the Computational Research Division, which does research in applied mathematics, computer science, data science, and computational science. Yelick is also a professor of Electrical Engineering and Computer Sciences at the University of California at Berkeley. Her research is in parallel programming languages, compilers, algorithms and automatic performance tuning. Yelick was director of NERSC from 2008 to 2012. She was recently elected to the National Academy of Engineering (NAE) and the American Association of Arts and Sciences, and is an ACM Fellow and recipient of the ACM/IEEE Ken Kennedy and Athena awards.

HPCwire: What scientific applications necessitate the development of exascale?

Kathy Yelick: There are more than 20 ECP applications that, broadly speaking, fall into the areas of national security, energy, the environment, manufacturing, infrastructure, healthcare and scientific discovery. Associated with each is an exascale challenge problem—something that requires around 50 times the computational power of current systems. They include a diverse set of problems such as a 100-year simulation of the integrity of fields where petroleum is extracted or energy waste is stored; a predictive simulation of an urban area that includes buildings, water quality and electricity demands; and detailed simulations of the universe to better explain and interpret the latest observational data. There are also applications analyzing data at an unprecedented scale, from the newest light sources to complex environmental genomes, and cancer research data that includes patient genetics, tumor genomes, molecular simulations and clinical data.

These applications will help us develop cleaner energy, improve the resilience of our infrastructure, develop materials for extreme environments, adapt to changes in the water cycle, understand the origin of elements in the universe, and develop smaller, more powerful accelerators for use in medicine and industry. And as a California resident, I’m interested in the work to better assess the risks posed by earthquakes.

These projects are not simply scaling or porting old codes to new machines, but each of represents a new predictive or analytic capability. Several are completely new to high performance computing, and others add new capabilities to existing codes, integrating new physical models that are often at widely different space or time scales than the original code.

HPCwire: How do you respond to concerns that exascale programs are too focused on the hardware or will only benefit so-called hero codes?

Yelick: That’s an interesting statement in that ECP is currently committed to funding over $200 million this year to support applications development, software and hardware R&D in partnerships with vendors. There will be substantial machine acquisitions outside the project, but the project itself is directed at these other parts of the ecosystem. As I noted earlier, the application portfolio is not directed at a few hero codes, but represents a broad range of applications from both traditional and non-traditional HPC problem domains.

The NERSC facility is not slated to get one of the first exascale systems, but we expect to provide such a capability a few of years later with the NERSC-10 acquisition. Similarly, NSF is planning a leadership scale acquisition in roughly the same time frame, which should also benefit from the ECP investments. The investments made now in exascale R&D and software will benefit all exascale systems, and lessons learned on the initial applications will inform other teams. NERSC has experience going back to the introduction of massive parallelism in helping the community make such a transition and has already started preparing the user community through its NERSC Exascale Science Applications Program, NESAP. NESAP has 20 user code teams, some of which overlap with the ECP applications, partnered with NERSC and the vendors to prepare their codes for exascale.

HPCwire: What is your perspective on the progress that is being made toward exascale, given the challenges (power, concurrency, fault-tolerance, applications)?

Yelick: We are making great progress in our applications, which were the subject of a recent internal project review. Several of the application teams have found new levels of concurrency and memory optimizations to deal with the most recent DOE HPC system, the NERSC Cori machine with its 68-core nodes and high-bandwidth memory. Much of the ECP software and programming technology can be leveraged across multiple applications, both within ECP and beyond. For example, the Adaptive Mesh Refinement Co-Design Center (AMReX) which was launched last November is releasing its new framework to support the development of block-structured AMR algorithms at the end of September. At least five of the ECP application projects are using AMR, allowing them to efficiently simulate fine-resolution features.

Some of the R&D projects are also getting a better handle on the type of failures that will be important in practice. The hardware R&D on processor and memory designs have made great strides in reducing total system power, but it remains a challenge, and the resulting architecture innovations continue to raise software challenges for the rest of the team. Overall, we’re seeing the benefit of collaborations across the different parts of the project, incorporation of previous research results, and the need for even tighter integration across these parts.

HPCwire: There’s an expectation that exascale supercomputers will need to support simulation, big data and machine learning workloads, which currently have distinct software stacks. What are your thoughts on this challenge? Will container technology be helpful?

Yelick: Containers can certainly help support a variety of software stacks, including today’s analytics stack, and NERSC’s Shifter technology has helped bring this to its HPC systems. But I think we’ll also see new software developed for machine learning to achieve much higher performance levels and move them over to lighter-weight software. Porting Spark or TensorFlow to an exascale system will bring new user communities, but may not produce the most efficient use of these machines.

It’s somewhat ironic that training for deep learning probably has more similarity to the HPL benchmark than many of the simulations that are run today, although requirements for numerical precision are different and likely to lead to some architectural divergence. The algorithms in this space are evolving rapidly and projects like CAMERA (the Center for Advanced Mathematics for Energy Research Applications) are developing methods for analyzing data from some of the large DOE experimental facilities. Some of our policies around use of HPC need to change to better fit data workloads, both to handle on-demand computing for real-time data streams and to address the long-term needs for data provenance and sharing. The idea of receiving HPC allocations for a year at a time, and having jobs that sit in queues, will not work for these problems. NERSC is exploring all of these topics, such as with their recent 15-petaflop deep learning run described in a paper [and covered by HPCwire] by a team from NERSC, Intel and Stanford; a pilot for real-time job queues; automated metadata analysis through machine learning; and their NESAP for Data partnerships.

HPCwire: Speaking of machine learning and adapting codes to exascale, you’re the PI for the ECP applications project “Exascale Solutions for Microbiome Analysis,’ which also involves Los Alamos National Lab and DOE’s Joint Genome Institute. Can you tell us more about that project and how you’re tailoring Meraculous for exascale systems?

Yelick: The ExaBiome project is developing scalable methods for genome analysis, especially the analysis of microorganisms, which are central players in the environment, food production and human health. They occur naturally as “microbiomes,” cooperative communities of microbes, which means that sequencing an environmental sample produces a metagenome with thousands or even millions of individual species mixed together. Many of the species cannot be cultured in a lab and may never have been seen before—JGI researchers have even discovered new life forms from such analyses. To help understand the function of various genes, Aydin Buluc and Ariful Azad in the Computational Research Division have developed a new high performance clustering algorithm called HipMCL. Such bioinformatics analysis has often been viewed as requiring shared memory machines with large memory, but we have found that using clever parallel algorithms and HPC systems with low-latency interconnects and lightweight communication, we can scale these algorithms to run across petascale systems.

The algorithms are very different than most physical simulations because they involve graph walks, hash tables and highly unstructured sparse matrices. The de novo metagenome assembly challenge is to construct the individual genomes from the mixture of fragments produced by sequencers; it is based on an assembler called Meraculous, developed by Dan Rokhsar’s group at JGI and UC Berkeley. As part of the ExaBiome project we’ve built a scalable implementation extended to handle metagenomes called MetaHipMer (Metagenome High Performance Meraculous). These tools will enable the analysis of very complex environmental samples, and analysis over time, to understand how the microbial community changes with the rest of the environment and influences that environment.

The algorithms also reflect an important workload for future exascale machines. As described in our recent EuroPar 2017 paper, they require fine-grained communication and therefore can take advantage of high injection rates, low latency and remote atomic operations (e.g., remotely incrementing a counter) in the networks. The computation is entirely dominated by these operations and local string alignment algorithms, so there’s no floating point in the entire application. It’s important that we keep all of these workloads in mind as we push towards exasacle, to ensure the machines are capable of graph problems, bioinformatics and other highly irregular computational patterns that may be of interest outside of science and engineering communities.

HPCwire: What are some of the other key points from your talk that you’d like to share with our readers?

Yelick: First, the science breakthroughs from exascale programs will rely not just on faster machines, but also on the development of new application capabilities that build on prior research in mathematics, computer science and data science. We need to keep this research pipeline engaged over the next few years, so that we continue to have a vibrant research community to produce the critical methods and techniques that we will need to solve computational and data science challenges beyond exascale.

In that same vein, we shouldn’t think of exascale as an end goal, but rather as another point in the continuum of scientific computing. While much of DOE’s computing effort is currently devoted to exascale, we are already looking beyond to specialized digital architectures, quantum and neuromorphic computing, and new models of scientific investigation and collaboration for addressing future challenges.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire