Kathy Yelick Charts the Promise and Progress of Exascale Science

By Tiffany Trader

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire.

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire.

The timing of Yelick’s talk is timely as one year ago, on Sept. 7, 2016,  the U.S. Department of Energy made the first in a series of announcements about funding support for various components of the Exascale Computing Program, or ECP. The ECP was established to develop the exascale applications, system software, and hardware innovations necessary to enable the delivery of capable exascale systems.

Yelick is the Associate Laboratory Director for Computing Sciences, which includes the National Energy Research Scientific Computing Center (NERSC), the Energy Sciences Network (ESnet) and the Computational Research Division, which does research in applied mathematics, computer science, data science, and computational science. Yelick is also a professor of Electrical Engineering and Computer Sciences at the University of California at Berkeley. Her research is in parallel programming languages, compilers, algorithms and automatic performance tuning. Yelick was director of NERSC from 2008 to 2012. She was recently elected to the National Academy of Engineering (NAE) and the American Association of Arts and Sciences, and is an ACM Fellow and recipient of the ACM/IEEE Ken Kennedy and Athena awards.

HPCwire: What scientific applications necessitate the development of exascale?

Kathy Yelick: There are more than 20 ECP applications that, broadly speaking, fall into the areas of national security, energy, the environment, manufacturing, infrastructure, healthcare and scientific discovery. Associated with each is an exascale challenge problem—something that requires around 50 times the computational power of current systems. They include a diverse set of problems such as a 100-year simulation of the integrity of fields where petroleum is extracted or energy waste is stored; a predictive simulation of an urban area that includes buildings, water quality and electricity demands; and detailed simulations of the universe to better explain and interpret the latest observational data. There are also applications analyzing data at an unprecedented scale, from the newest light sources to complex environmental genomes, and cancer research data that includes patient genetics, tumor genomes, molecular simulations and clinical data.

These applications will help us develop cleaner energy, improve the resilience of our infrastructure, develop materials for extreme environments, adapt to changes in the water cycle, understand the origin of elements in the universe, and develop smaller, more powerful accelerators for use in medicine and industry. And as a California resident, I’m interested in the work to better assess the risks posed by earthquakes.

These projects are not simply scaling or porting old codes to new machines, but each of represents a new predictive or analytic capability. Several are completely new to high performance computing, and others add new capabilities to existing codes, integrating new physical models that are often at widely different space or time scales than the original code.

HPCwire: How do you respond to concerns that exascale programs are too focused on the hardware or will only benefit so-called hero codes?

Yelick: That’s an interesting statement in that ECP is currently committed to funding over $200 million this year to support applications development, software and hardware R&D in partnerships with vendors. There will be substantial machine acquisitions outside the project, but the project itself is directed at these other parts of the ecosystem. As I noted earlier, the application portfolio is not directed at a few hero codes, but represents a broad range of applications from both traditional and non-traditional HPC problem domains.

The NERSC facility is not slated to get one of the first exascale systems, but we expect to provide such a capability a few of years later with the NERSC-10 acquisition. Similarly, NSF is planning a leadership scale acquisition in roughly the same time frame, which should also benefit from the ECP investments. The investments made now in exascale R&D and software will benefit all exascale systems, and lessons learned on the initial applications will inform other teams. NERSC has experience going back to the introduction of massive parallelism in helping the community make such a transition and has already started preparing the user community through its NERSC Exascale Science Applications Program, NESAP. NESAP has 20 user code teams, some of which overlap with the ECP applications, partnered with NERSC and the vendors to prepare their codes for exascale.

HPCwire: What is your perspective on the progress that is being made toward exascale, given the challenges (power, concurrency, fault-tolerance, applications)?

Yelick: We are making great progress in our applications, which were the subject of a recent internal project review. Several of the application teams have found new levels of concurrency and memory optimizations to deal with the most recent DOE HPC system, the NERSC Cori machine with its 68-core nodes and high-bandwidth memory. Much of the ECP software and programming technology can be leveraged across multiple applications, both within ECP and beyond. For example, the Adaptive Mesh Refinement Co-Design Center (AMReX) which was launched last November is releasing its new framework to support the development of block-structured AMR algorithms at the end of September. At least five of the ECP application projects are using AMR, allowing them to efficiently simulate fine-resolution features.

Some of the R&D projects are also getting a better handle on the type of failures that will be important in practice. The hardware R&D on processor and memory designs have made great strides in reducing total system power, but it remains a challenge, and the resulting architecture innovations continue to raise software challenges for the rest of the team. Overall, we’re seeing the benefit of collaborations across the different parts of the project, incorporation of previous research results, and the need for even tighter integration across these parts.

HPCwire: There’s an expectation that exascale supercomputers will need to support simulation, big data and machine learning workloads, which currently have distinct software stacks. What are your thoughts on this challenge? Will container technology be helpful?

Yelick: Containers can certainly help support a variety of software stacks, including today’s analytics stack, and NERSC’s Shifter technology has helped bring this to its HPC systems. But I think we’ll also see new software developed for machine learning to achieve much higher performance levels and move them over to lighter-weight software. Porting Spark or TensorFlow to an exascale system will bring new user communities, but may not produce the most efficient use of these machines.

It’s somewhat ironic that training for deep learning probably has more similarity to the HPL benchmark than many of the simulations that are run today, although requirements for numerical precision are different and likely to lead to some architectural divergence. The algorithms in this space are evolving rapidly and projects like CAMERA (the Center for Advanced Mathematics for Energy Research Applications) are developing methods for analyzing data from some of the large DOE experimental facilities. Some of our policies around use of HPC need to change to better fit data workloads, both to handle on-demand computing for real-time data streams and to address the long-term needs for data provenance and sharing. The idea of receiving HPC allocations for a year at a time, and having jobs that sit in queues, will not work for these problems. NERSC is exploring all of these topics, such as with their recent 15-petaflop deep learning run described in a paper [and covered by HPCwire] by a team from NERSC, Intel and Stanford; a pilot for real-time job queues; automated metadata analysis through machine learning; and their NESAP for Data partnerships.

HPCwire: Speaking of machine learning and adapting codes to exascale, you’re the PI for the ECP applications project “Exascale Solutions for Microbiome Analysis,’ which also involves Los Alamos National Lab and DOE’s Joint Genome Institute. Can you tell us more about that project and how you’re tailoring Meraculous for exascale systems?

Yelick: The ExaBiome project is developing scalable methods for genome analysis, especially the analysis of microorganisms, which are central players in the environment, food production and human health. They occur naturally as “microbiomes,” cooperative communities of microbes, which means that sequencing an environmental sample produces a metagenome with thousands or even millions of individual species mixed together. Many of the species cannot be cultured in a lab and may never have been seen before—JGI researchers have even discovered new life forms from such analyses. To help understand the function of various genes, Aydin Buluc and Ariful Azad in the Computational Research Division have developed a new high performance clustering algorithm called HipMCL. Such bioinformatics analysis has often been viewed as requiring shared memory machines with large memory, but we have found that using clever parallel algorithms and HPC systems with low-latency interconnects and lightweight communication, we can scale these algorithms to run across petascale systems.

The algorithms are very different than most physical simulations because they involve graph walks, hash tables and highly unstructured sparse matrices. The de novo metagenome assembly challenge is to construct the individual genomes from the mixture of fragments produced by sequencers; it is based on an assembler called Meraculous, developed by Dan Rokhsar’s group at JGI and UC Berkeley. As part of the ExaBiome project we’ve built a scalable implementation extended to handle metagenomes called MetaHipMer (Metagenome High Performance Meraculous). These tools will enable the analysis of very complex environmental samples, and analysis over time, to understand how the microbial community changes with the rest of the environment and influences that environment.

The algorithms also reflect an important workload for future exascale machines. As described in our recent EuroPar 2017 paper, they require fine-grained communication and therefore can take advantage of high injection rates, low latency and remote atomic operations (e.g., remotely incrementing a counter) in the networks. The computation is entirely dominated by these operations and local string alignment algorithms, so there’s no floating point in the entire application. It’s important that we keep all of these workloads in mind as we push towards exasacle, to ensure the machines are capable of graph problems, bioinformatics and other highly irregular computational patterns that may be of interest outside of science and engineering communities.

HPCwire: What are some of the other key points from your talk that you’d like to share with our readers?

Yelick: First, the science breakthroughs from exascale programs will rely not just on faster machines, but also on the development of new application capabilities that build on prior research in mathematics, computer science and data science. We need to keep this research pipeline engaged over the next few years, so that we continue to have a vibrant research community to produce the critical methods and techniques that we will need to solve computational and data science challenges beyond exascale.

In that same vein, we shouldn’t think of exascale as an end goal, but rather as another point in the continuum of scientific computing. While much of DOE’s computing effort is currently devoted to exascale, we are already looking beyond to specialized digital architectures, quantum and neuromorphic computing, and new models of scientific investigation and collaboration for addressing future challenges.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in O&G: Deep Sea Drilling – What Happens Now   

June 4, 2020

At the beginning of March I attended the Rice Oil & Gas HPC conference in Houston. That seems a long time ago now. It’s a great event where oil and gas specialists join with compute veterans and the discussion tell Read more…

By Rosemary Francis

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCSA’s next generation of supercomputers post-Blue Waters,” Read more…

By John Russell

Dell Integrates Bitfusion for vHPC, GPU ‘Pools’

June 3, 2020

Dell Technologies advanced its hardware virtualization strategy to AI workloads this week with the introduction of capabilities aimed at expanding access to GPU and HPC services via its EMC, VMware and recently acquired Read more…

By George Leopold

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

AWS Solution Channel

Join AWS, Univa and Intel for This Informative Session!

Event Date: June 18, 2020

More enterprises than ever are turning to HPC cloud computing. Whether you’re just getting started, or more mature in your use of cloud, this HPC Cloud webinar is an excellent opportunity to gain valuable insights and knowledge to help accelerate your HPC cloud projects. Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCS Read more…

By John Russell

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This