AI: Deeper Learning with Intel® Omni-Path Architecture

September 18, 2017

Deep learning is a powerful tool that identifies patterns, extracts meaning from large, diverse datasets, and solves complex problems.  However, integrating neural networks into existing compute environments is a challenge that often requires specialized and costly infrastructure.

New software and hardware options will simplify the complexity.

  • Figure 1. A 32-node cluster based on Intel® Xeon Phi™ processors and Intel® Omni-Path Architecture demonstrated near-linear scaling running a neural network training workload based on Google TensorFlow.
    Figure 1. A 32-node cluster based on Intel® Xeon Phi™ processors and Intel® Omni-Path Architecture demonstrated near-linear scaling running a neural network training workload based on Google TensorFlow.

    Intel® Omni-Path Architecture (Intel® OPA) is well suited to the demands of deep learning, enabling near-linear scalability across large numbers of nodes to provide fast time to results for large problems (see Figure 1).

  • Intel® Xeon® Scalable processors provide up to 2.2X higher neural network training performance than previous-generation Intel Xeon processors.[i]
  • Intel® Xeon Phi™ processors provide extreme parallelism, and deliver up to a teraflop or more of performance for neural network training, without the inherent latencies of GPUs or other PCIe-connected devices.
  • Intel optimized tools, libraries, and frameworks for deep learning provide better performance on Intel architecture than non-optimized software.

A key focus of deep learning implementations is to reduce the time to train the model and to ensure a high level of accuracy. HPC clusters provide a scalable foundation for addressing this need.[ii] However, due to workload characteristics and the compute capabilities of Intel Xeon processors, a high speed, low latency network fabric interconnect is needed to reduce the chance of a performance bottleneck. The fabric must allow all nodes to communicate quickly and effectively, so the servers don’t waste valuable compute cycles waiting to send and receive information.

As part of Intel® Scalable System Framework (Intel® SSF), Intel OPA is designed to tackle the compute- and data-intensive workloads of deep learning and other HPC applications. This high-speed fabric is developed in tandem with Intel compute and storage technologies. The resulting integration helps to resolve many of the performance and cost challenges associated with traditional HPC fabrics.

A Fabric for the Future of AI—and Other HPC Workloads

Deep learning frameworks differ, but the general workflow is the same as it is for many other HPC applications: work the calculation, iterate, then blast out the results to adjacent workloads. During the data sharing stage, a high volume of very small, latency-sensitive messages is broadcast across the fabric.

Breaking Down Barriers in AI

As the interconnect for the Pittsburgh Supercomputing Center’s supercomputer, known as Bridges, Intel® Omni-Path Architecture (Intel® OPA) is already helping to push the boundaries of AI. Bridges compute resources were used to train and run Libratus, an AI application that beat four of the world’s top poker players in a no-limit, Texas Hold ‘em tournament.

The performance and scale of Bridges enabled Libratus to refine its strategy each night based on the previous day’s play. One player said it felt like he was “playing against someone who could see his cards.”

The victory was about more than bragging rights. Libratus is applicable to other two-player zero-sum games, such as cyber-security, adversarial negotiations, and military planning, so beating humans has profound implications.

Read more about the Bridges supercomputer and Intel OPA.

Intel OPA transmits this traffic with the same 100 Gbps line speed as other high-speed fabrics, but this tells only part of the story. It also includes optimizations that address common bottlenecks.

  • Low-Latency, Even at Extreme Scale. Intel OPA provides traffic shaping and quality of service features to improve data flow and prioritize MPI traffic. These advantages help to reduce latency by up to 11 percent versus EDR InfiniBand, with up to 64 percent higher messaging rates.[i]
  • Better Price Performance. Intel OPA is based on a 48-port chip architecture (versus 36-port for InfiniBand). This reduces the number of switches, cables, and switch hops in medium to large clusters, which provides both cost and performance advantages.
  • Improved Accuracy and Resilience. Unlike InfiniBand, Intel OPA implements no-latency error checking, which improves data accuracy without slowing performance. It also stays up and running in the event of a physical link failure, so applications can run to completion, a crucial advantage for lengthy training runs.

Tight Integration Throughout the Stack

Tight integration among Intel OPA and the other components defined by Intel SSF provides additional value. For example, Intel Xeon Scalable processors and Intel Xeon Phi processors are available with integrated Intel OPA controllers to reduce the cost associated with separate fabric cards.

Intel also developed and tested Intel OPA in combination with our full HPC software stack, including Intel® HPC Orchestrator, Intel® MPI, the Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN), and the Intel® Machine Learning Scaling Library (Intel® MLSL). This integration helps to improve performance and reliability. It also reduces the complexity of designing, deploying, and managing an HPC cluster.

Figure 2. The Intel® Scalable System Framework simplifies the design of efficient, high-performing clusters that optimize the value of HPC investments.

A Faster Road to Pervasive Intelligence

Learn more about Intel SSF benefits for AI and other HPC workloads at each level of the solution stack: compute, memory, storage, fabric, and software.AI is still in its infancy. Tomorrow’s neural networks will dwarf those of today. The mission of Intel OPA and the full Intel SSF solution stack is to make the computing foundation for this growth as simple, scalable and affordable as possible, not only for AI, but for all HPC workloads. This will help to ensure that front-line innovators have the tools they need to support their core mission—transforming the world through deep, pervasive intelligence.

[1] For details, see https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html

[2] Not all deep learning frameworks are optimized to run efficiently on HPC clusters. Intel is working with the vendor and open source communities to resolve this issue and to lay the foundation for increasingly large neural networks acting on petabyte-scale datasets.

[3] For details, see https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that simulating physical systems could be done most effectively Read more…

By John Russell

RIKEN and CEA Mark One Year of Exascale-focused Collaboration

July 16, 2018

RIKEN in Japan and the French Alternative Energies and Atomic Energy Commission (CEA) formed a five-year cooperative research effort on January 11, 2017, to advance HPC and prepare for exascale computing (see HPCwire co Read more…

By Nishi Katsuya

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Meet the ISC18 Cluster Teams: Up Close & Personal

July 6, 2018

It’s time to meet your ISC18 Student Cluster Competition teams. While I was able to film them live at the ISC show, the trick was finding time to edit the vid Read more…

By Dan Olds

PRACEdays18 Keynote Allan Williams (Australia/NCI): We’re Open for Business Down Under!

July 5, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened with a plenary session on May 29, 2018 Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This