AI: Deeper Learning with Intel® Omni-Path Architecture

September 18, 2017

Deep learning is a powerful tool that identifies patterns, extracts meaning from large, diverse datasets, and solves complex problems.  However, integrating neural networks into existing compute environments is a challenge that often requires specialized and costly infrastructure.

New software and hardware options will simplify the complexity.

  • Figure 1. A 32-node cluster based on Intel® Xeon Phi™ processors and Intel® Omni-Path Architecture demonstrated near-linear scaling running a neural network training workload based on Google TensorFlow.
    Figure 1. A 32-node cluster based on Intel® Xeon Phi™ processors and Intel® Omni-Path Architecture demonstrated near-linear scaling running a neural network training workload based on Google TensorFlow.

    Intel® Omni-Path Architecture (Intel® OPA) is well suited to the demands of deep learning, enabling near-linear scalability across large numbers of nodes to provide fast time to results for large problems (see Figure 1).

  • Intel® Xeon® Scalable processors provide up to 2.2X higher neural network training performance than previous-generation Intel Xeon processors.[i]
  • Intel® Xeon Phi™ processors provide extreme parallelism, and deliver up to a teraflop or more of performance for neural network training, without the inherent latencies of GPUs or other PCIe-connected devices.
  • Intel optimized tools, libraries, and frameworks for deep learning provide better performance on Intel architecture than non-optimized software.

A key focus of deep learning implementations is to reduce the time to train the model and to ensure a high level of accuracy. HPC clusters provide a scalable foundation for addressing this need.[ii] However, due to workload characteristics and the compute capabilities of Intel Xeon processors, a high speed, low latency network fabric interconnect is needed to reduce the chance of a performance bottleneck. The fabric must allow all nodes to communicate quickly and effectively, so the servers don’t waste valuable compute cycles waiting to send and receive information.

As part of Intel® Scalable System Framework (Intel® SSF), Intel OPA is designed to tackle the compute- and data-intensive workloads of deep learning and other HPC applications. This high-speed fabric is developed in tandem with Intel compute and storage technologies. The resulting integration helps to resolve many of the performance and cost challenges associated with traditional HPC fabrics.

A Fabric for the Future of AI—and Other HPC Workloads

Deep learning frameworks differ, but the general workflow is the same as it is for many other HPC applications: work the calculation, iterate, then blast out the results to adjacent workloads. During the data sharing stage, a high volume of very small, latency-sensitive messages is broadcast across the fabric.

Breaking Down Barriers in AI

As the interconnect for the Pittsburgh Supercomputing Center’s supercomputer, known as Bridges, Intel® Omni-Path Architecture (Intel® OPA) is already helping to push the boundaries of AI. Bridges compute resources were used to train and run Libratus, an AI application that beat four of the world’s top poker players in a no-limit, Texas Hold ‘em tournament.

The performance and scale of Bridges enabled Libratus to refine its strategy each night based on the previous day’s play. One player said it felt like he was “playing against someone who could see his cards.”

The victory was about more than bragging rights. Libratus is applicable to other two-player zero-sum games, such as cyber-security, adversarial negotiations, and military planning, so beating humans has profound implications.

Read more about the Bridges supercomputer and Intel OPA.

Intel OPA transmits this traffic with the same 100 Gbps line speed as other high-speed fabrics, but this tells only part of the story. It also includes optimizations that address common bottlenecks.

  • Low-Latency, Even at Extreme Scale. Intel OPA provides traffic shaping and quality of service features to improve data flow and prioritize MPI traffic. These advantages help to reduce latency by up to 11 percent versus EDR InfiniBand, with up to 64 percent higher messaging rates.[i]
  • Better Price Performance. Intel OPA is based on a 48-port chip architecture (versus 36-port for InfiniBand). This reduces the number of switches, cables, and switch hops in medium to large clusters, which provides both cost and performance advantages.
  • Improved Accuracy and Resilience. Unlike InfiniBand, Intel OPA implements no-latency error checking, which improves data accuracy without slowing performance. It also stays up and running in the event of a physical link failure, so applications can run to completion, a crucial advantage for lengthy training runs.

Tight Integration Throughout the Stack

Tight integration among Intel OPA and the other components defined by Intel SSF provides additional value. For example, Intel Xeon Scalable processors and Intel Xeon Phi processors are available with integrated Intel OPA controllers to reduce the cost associated with separate fabric cards.

Intel also developed and tested Intel OPA in combination with our full HPC software stack, including Intel® HPC Orchestrator, Intel® MPI, the Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN), and the Intel® Machine Learning Scaling Library (Intel® MLSL). This integration helps to improve performance and reliability. It also reduces the complexity of designing, deploying, and managing an HPC cluster.

Figure 2. The Intel® Scalable System Framework simplifies the design of efficient, high-performing clusters that optimize the value of HPC investments.

A Faster Road to Pervasive Intelligence

Learn more about Intel SSF benefits for AI and other HPC workloads at each level of the solution stack: compute, memory, storage, fabric, and software.AI is still in its infancy. Tomorrow’s neural networks will dwarf those of today. The mission of Intel OPA and the full Intel SSF solution stack is to make the computing foundation for this growth as simple, scalable and affordable as possible, not only for AI, but for all HPC workloads. This will help to ensure that front-line innovators have the tools they need to support their core mission—transforming the world through deep, pervasive intelligence.

[1] For details, see https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html

[2] Not all deep learning frameworks are optimized to run efficiently on HPC clusters. Intel is working with the vendor and open source communities to resolve this issue and to lay the foundation for increasingly large neural networks acting on petabyte-scale datasets.

[3] For details, see https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire