AI: Deeper Learning with Intel® Omni-Path Architecture

September 18, 2017

Deep learning is a powerful tool that identifies patterns, extracts meaning from large, diverse datasets, and solves complex problems.  However, integrating neural networks into existing compute environments is a challenge that often requires specialized and costly infrastructure.

New software and hardware options will simplify the complexity.

  • Figure 1. A 32-node cluster based on Intel® Xeon Phi™ processors and Intel® Omni-Path Architecture demonstrated near-linear scaling running a neural network training workload based on Google TensorFlow.
    Figure 1. A 32-node cluster based on Intel® Xeon Phi™ processors and Intel® Omni-Path Architecture demonstrated near-linear scaling running a neural network training workload based on Google TensorFlow.

    Intel® Omni-Path Architecture (Intel® OPA) is well suited to the demands of deep learning, enabling near-linear scalability across large numbers of nodes to provide fast time to results for large problems (see Figure 1).

  • Intel® Xeon® Scalable processors provide up to 2.2X higher neural network training performance than previous-generation Intel Xeon processors.[i]
  • Intel® Xeon Phi™ processors provide extreme parallelism, and deliver up to a teraflop or more of performance for neural network training, without the inherent latencies of GPUs or other PCIe-connected devices.
  • Intel optimized tools, libraries, and frameworks for deep learning provide better performance on Intel architecture than non-optimized software.

A key focus of deep learning implementations is to reduce the time to train the model and to ensure a high level of accuracy. HPC clusters provide a scalable foundation for addressing this need.[ii] However, due to workload characteristics and the compute capabilities of Intel Xeon processors, a high speed, low latency network fabric interconnect is needed to reduce the chance of a performance bottleneck. The fabric must allow all nodes to communicate quickly and effectively, so the servers don’t waste valuable compute cycles waiting to send and receive information.

As part of Intel® Scalable System Framework (Intel® SSF), Intel OPA is designed to tackle the compute- and data-intensive workloads of deep learning and other HPC applications. This high-speed fabric is developed in tandem with Intel compute and storage technologies. The resulting integration helps to resolve many of the performance and cost challenges associated with traditional HPC fabrics.

A Fabric for the Future of AI—and Other HPC Workloads

Deep learning frameworks differ, but the general workflow is the same as it is for many other HPC applications: work the calculation, iterate, then blast out the results to adjacent workloads. During the data sharing stage, a high volume of very small, latency-sensitive messages is broadcast across the fabric.

Breaking Down Barriers in AI

As the interconnect for the Pittsburgh Supercomputing Center’s supercomputer, known as Bridges, Intel® Omni-Path Architecture (Intel® OPA) is already helping to push the boundaries of AI. Bridges compute resources were used to train and run Libratus, an AI application that beat four of the world’s top poker players in a no-limit, Texas Hold ‘em tournament.

The performance and scale of Bridges enabled Libratus to refine its strategy each night based on the previous day’s play. One player said it felt like he was “playing against someone who could see his cards.”

The victory was about more than bragging rights. Libratus is applicable to other two-player zero-sum games, such as cyber-security, adversarial negotiations, and military planning, so beating humans has profound implications.

Read more about the Bridges supercomputer and Intel OPA.

Intel OPA transmits this traffic with the same 100 Gbps line speed as other high-speed fabrics, but this tells only part of the story. It also includes optimizations that address common bottlenecks.

  • Low-Latency, Even at Extreme Scale. Intel OPA provides traffic shaping and quality of service features to improve data flow and prioritize MPI traffic. These advantages help to reduce latency by up to 11 percent versus EDR InfiniBand, with up to 64 percent higher messaging rates.[i]
  • Better Price Performance. Intel OPA is based on a 48-port chip architecture (versus 36-port for InfiniBand). This reduces the number of switches, cables, and switch hops in medium to large clusters, which provides both cost and performance advantages.
  • Improved Accuracy and Resilience. Unlike InfiniBand, Intel OPA implements no-latency error checking, which improves data accuracy without slowing performance. It also stays up and running in the event of a physical link failure, so applications can run to completion, a crucial advantage for lengthy training runs.

Tight Integration Throughout the Stack

Tight integration among Intel OPA and the other components defined by Intel SSF provides additional value. For example, Intel Xeon Scalable processors and Intel Xeon Phi processors are available with integrated Intel OPA controllers to reduce the cost associated with separate fabric cards.

Intel also developed and tested Intel OPA in combination with our full HPC software stack, including Intel® HPC Orchestrator, Intel® MPI, the Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN), and the Intel® Machine Learning Scaling Library (Intel® MLSL). This integration helps to improve performance and reliability. It also reduces the complexity of designing, deploying, and managing an HPC cluster.

Figure 2. The Intel® Scalable System Framework simplifies the design of efficient, high-performing clusters that optimize the value of HPC investments.

A Faster Road to Pervasive Intelligence

Learn more about Intel SSF benefits for AI and other HPC workloads at each level of the solution stack: compute, memory, storage, fabric, and software.AI is still in its infancy. Tomorrow’s neural networks will dwarf those of today. The mission of Intel OPA and the full Intel SSF solution stack is to make the computing foundation for this growth as simple, scalable and affordable as possible, not only for AI, but for all HPC workloads. This will help to ensure that front-line innovators have the tools they need to support their core mission—transforming the world through deep, pervasive intelligence.

[1] For details, see https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html

[2] Not all deep learning frameworks are optimized to run efficiently on HPC clusters. Intel is working with the vendor and open source communities to resolve this issue and to lay the foundation for increasingly large neural networks acting on petabyte-scale datasets.

[3] For details, see https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-performance-overview.html

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This