PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

By John Russell

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near-term and long-term technologies that could impact DoE workloads and HPC broadly. This month the leadership baton was passed from founding director Adolfy Hoisie to Kevin Barker, a veteran PNNL researcher and member of the CENATE project since its start. Hoisie has moved to Brookhaven National Lab to lead another new initiative as chair of the just-formed Computing for National Security Department.

In its short lifespan, CENATE has made steady strides. It has assembled an impressive infrastructure of test and measurement capabilities to explore computer technology. It has tackled several specific projects, ranging from the study of novel architecture from Data Vortex and Nvidia’s DGX-1 to longer horizon efforts around neuromorphic technology. The change in leadership, emphasizes Barker, won’t alter CENATE’s ambitious plans, but it will enable refinement of several processes, notably an effort to forge tighter links to the HPC community writ large, including DoE researchers, academia, and commercial technology partners.

Today there are about a dozen CENATE staff at PNNL, says Barker. One of the biggest changes will be standing up a more inclusive, more activist steering committee to guide CENATE.

Kevin Barker, P.I., Center for Advanced Technology Evaluation (CENATE), PNNL

Recently, HPCwire talked with Barker about the developing plans for CENATE and its priorities. Barker is certainly no stranger to HPC. He joined PNNL in 2010 as a senior HPC research scientist rising to team lead for modeling and simulation in 2014. Before joining PNNL, Barker spent nearly six years at Los Alamos National Laboratory as an HPC research scientist.

HPCwire: Your prior CENATE experience will no doubt be helpful. Perhaps you could describe your role and provide a sense of what CENATE has accomplished to date.

Barker: Really, I’ve been with CENATE since it began. It had a couple of focus areas in terms of how it was organized internally. I was in charge of one of those areas around performance predictions. The idea was that CENATE would be a program that encompassed not only of testbed and performance measurements but also would take those performance measurements we could get from physical systems, or prototype systems at small scale, and use performance prediction techniques to explore what those performance impacts would be at large scale. That was my role. Now, I am the PI.

In the first two years of the project, CENATE has deployed testbeds incorporating emerging technologies in the areas of processing, memory, and networking, and has engaged with the research community to assess the applicability of these technologies to workloads of interest to the Department of Energy. Specifically, CENATE has explored high-throughput architectures applied to large-scale Machine Learning frameworks; non-volatile memories; reconfigurable optical networking technology; and self-routing, dynamic, congestion-free networks applied to graph analytics. Through a broad community engagement, CENATE has ensured that its findings are fed back through workshops and deep collaborations with leading researchers.

HPCwire: That’s an extensive list. What’s going to change?

Barker: This change in leadership isn’t a dramatic change in terms of the technical capabilities or what we hope to accomplish technically. Now we want to ensure CENATE is more tightly integrated with the outside community, the HPC community in the DoE, and the vendor space. We also want to make sure the work we are doing at CENATE has an impact back at the DoE.

We’re working on getting a good plan in place to accomplish that – engaging with the vendor community, engaging with application developers, systems software developers, with the DoE complex making CENATE resources available to those people so that we can have a collaborative research environment. They can bring their problems to CENATE and we could provide access to some of these novel and emerging technologies that CENATE is tasked with assessing.

HPCwire: Maybe we should step back and review CENATE’s mission. How do you see it evolving, particularly in light of establishing a more inclusive and activist steering committee?

Barker: Again, it hasn’t really changed. When the steering committee stands up we envision CENATE taking on two kinds of tracks in terms of the research and the resources that we look at in each track. In the first track, we envision a shorter time scale where we are looking at technologies that are very near to market that we can get close to either prototype hardware, early release hardware, or engineering sample hardware. For the second track, in terms of timescale, we want CENATE to have an impact on more novel or high risk architectural approaches. So we might look at such things as beyond Moore’s Law computing technologies.

We envision the steering committee having a big impact because we want to have some indication from the community regarding what are the technologies that we should be most interested in from a community perspective. [Tentatively] we envision a fixed six-month schedule steering committee meetings in particular to discuss what architectures should be look at in the next six months window and feedback from the previous six month windows. We haven’t decided yet whether those will take the form of a meeting or workshop where we have more community involvement from outside the just the steering committee. Those are some of the thing still under discussion.

HPCwire: Given the importance of the steering committee, how big will it be and who will be on it?

Barker: It could be 15 or so organizations, maybe a person from each organization. We would like to have participation from other labs in the DoE community, and potentially academic partners. For example Indiana University is a major user of the Data Vortex architecture so it makes sense for them to participate. The third group being the commercial vendor space. We want to have this settled (and up on the web) before supercomputing (SC17, November 12-17).

HPCwire: There are so many new technologies bubbling up at various stages of development. Adolfy had mentioned interest in developing neuromorphic chips. Is that work ongoing? What’s the thinking on longer term technologies?

Barker: We are definitely interested in these longer term technologies and think that CENATE can have a big impact in the community, presenting that to the funding sources and say hey we want to have CENATE really to be positioned to have an impact beyond the next thing that you can buy from your hardware vendor. To explore the next gen technologies that aren’t necessarily tied to commercial products at this point but may still have real impact, particularly in the generation of beyond exascale.

For example, the exascale systems are pretty well covered with the Exascale Computing Project. We’re very familiar now with what those systems are going to look like. People are very focused to get their applications to run on those architectures. That’s not really where we see CENATE having a play. In looking beyond that, what are the technologies that are going to shape high performance computing beyond exascale timeframe? We really want CENATE to be positioned to have an impact in those areas. This is what I mean by saying a refinement of the CENATE direction. Up until now CENATE has looked at a number of near-to-market or new to market technologies. And they have had a big impact. The DGX-1 is great example. We stood up a DGX-1 and immediately we had users from around the lab complex and academia clamoring to get on the machine to explore how their applications are going to perform to develop system software and things such as that.

But we want CENATE also to look beyond that, things like extreme heterogeneity, software reconfigurable computing. So this is really why we are placing and emphasis on the connection to the research community so that we can get as much as is possible an accurate prediction of why these are the technologies that we think are going to make an impact. How can CENATE position itself to help assess those technologies in the near-term and that might involve a much deeper dive into specific technologies? CENATE doesn’t have an unlimited amount of resources (time personnel dollars) so it’s very important we target those things as effectively as we can.

HPCwire: Funding is always an issue on advanced research and DoE is a big player. What about tapping into programs such as DARPA’s Electronics Resurgence Initiative (ERI) which is focused on post-Moore’s law technology and just received additional funding?

Barker: There are definitely some programs that worth [looking at]. We are not working with ERI in particular although that could be something we explore together with program management from DoE headquarters. But there are some opportunities exactly along those lines that we are looking into but nothing firm at this point.

HPCwire: Given the various changes, and the enhanced role of the steering committee, is it premature to identify the top five technologies we are going to tackle in the next year?

Barker: Exactly. Unfortunately the end of the year is kind of a busy time in the HPC world with SC (supercomputing conference) and everything else going on. We hope those kinds of things pinned down with at least some degree of certainty within the next few months.

HPCwire: One of the distinguishing aspects of CENATE is the diversity and sophistication of the test and measurement equipment and capabilities at PNNL. What’s happening on that front?

Barker: We have equipment for testing power and energy and well as for thermal measurement capability. That is still all in place. We’re expanding the evaluation test suite that we have been using up until this point, the benchmark codes. CENATE itself has an evaluation test suite in addition to reaching out to collaborators who are interested in the equipment and who bring their own software test suite. We’re interested in looking at these machines in the context of numerical simulation, high performance computing codes, as well as graph analytics codes, machine learning codes, so we are expanding that set of benchmark codes, but the measurement capabilities we have in place are still in place.

HPCwire: It sounds like, among other things, you are adapting your capabilities to be able to handle emerging, nontraditional ‘HPC’ needs such as deep learning and data analytics?

Barker: Right. One of the important things when we are looking at these architectures, and the DGX-1 is good example, is we want to evaluate those technologies in the mode they are designed to operate in. The DGX-1 really is designed as a deep learning/ machine learning architecture. Exploring simply traditional HPC simulation codes on it might not be the most appropriate thing to do. We want to paint it [DGX-1 performance and potential] in the light it was designed for. Our evaluation suite of kernels and benchmarks needs to encompass those application areas that these architectures are targeting. And things like machine learning and deep learning are becoming such a part of the DoE workload that for CENATE to remain relevant to the DoE we need to have that capability. The DoE HPC landscape is much more than tightly couple code.

HPCwire: In the past there had been talk of CENATE workshops and other outreach efforts to diffuse CENATE learnings into the community but I don’t think much has happened along those lines yet. How do you share results and what are the plans going forward?

Barker: This is one area where we have decided that some refinement is necessary. Currently the mechanism that we use to present some of these results back to the community is through publications. It’s a pretty typical route. We’ve had some success there and, for example, we have papers on our work with DGX-1 in the submission process right now. We want to expand how we do this and are still developing the plans.

Hosting user group meetings is another way. Just two weeks ago, we hosted the first Data Vortex user group meeting at PNNL and CENATE was a player in that it brought together a couple of other programs that were looking at the data vortex architecture. That was a really successful workshop. Researchers from DoE, other government agencies, academic researchers came here to PNNL specifically about the data vortex architecture which is a big architecture in CENATE. We actually have two Data Vortex machines. That’s an example we can point to where we can say CENATE is making an impact in the community.

The NDA issues are sometimes very tricky but we have some experience with other projects where similar issues have arisen so we do have some strategies to deal with NDA issues.

HPCwire: How will you reach potential collaborators. There’s the technical steering committee but given its relatively small size, who will you reach beyond its immediate interests and attract other collaborators?

Barker: We are standing up a new CENATE web site that we hope to have up very soon, which will solicit this kind of input and have a mechanism where we can say if you’re a commercial or vendor partner and you want to participate in the CENATE program, here’s how you can get in touch with us. We definitely don’t want to be an exclusive club. We want to cast a wide net in terms of the types of technologies that are represented in the steering committee. Some of this is still in progress

One of the things we are exploring [for the web site] is a way to have potential interested external parties propose what they would like to do and the equipment they would be interested in evaluating. Again, this where the technical steering committee again comes to evaluate these proposals. It might be a model where – and this is what we are moving towards – where we essentially put out a call [for proposal]. That sounds a bit formal. CENATE is not a funding organization and won’t fund external collaborators. But it will be a way for submitters to say what interesting problems are they interested in solving that CENATE could then participate in and possibly provide access to technology. So if you are professor with some graduate students you might say, ‘Here’s an application that we want to develop and we want to explore how it might work on architecture x but we don’t have the means to get architecture x, can CENATE help?’

HPCwire: Thank you for your time.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU--and a refresh of its inference server software packaged as Read more…

By George Leopold

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

NSF Highlights Expanded Efforts for Broadening Participation in Computing

September 13, 2018

Today, the Directorate of Computer and Information Science and Engineering (CISE) of the NSF released a letter highlighting the expansion of its broadening participation in computing efforts. The letter was penned by Jam Read more…

By Staff

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This