PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

By John Russell

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near-term and long-term technologies that could impact DoE workloads and HPC broadly. This month the leadership baton was passed from founding director Adolfy Hoisie to Kevin Barker, a veteran PNNL researcher and member of the CENATE project since its start. Hoisie has moved to Brookhaven National Lab to lead another new initiative as chair of the just-formed Computing for National Security Department.

In its short lifespan, CENATE has made steady strides. It has assembled an impressive infrastructure of test and measurement capabilities to explore computer technology. It has tackled several specific projects, ranging from the study of novel architecture from Data Vortex and Nvidia’s DGX-1 to longer horizon efforts around neuromorphic technology. The change in leadership, emphasizes Barker, won’t alter CENATE’s ambitious plans, but it will enable refinement of several processes, notably an effort to forge tighter links to the HPC community writ large, including DoE researchers, academia, and commercial technology partners.

Today there are about a dozen CENATE staff at PNNL, says Barker. One of the biggest changes will be standing up a more inclusive, more activist steering committee to guide CENATE.

Kevin Barker, P.I., Center for Advanced Technology Evaluation (CENATE), PNNL

Recently, HPCwire talked with Barker about the developing plans for CENATE and its priorities. Barker is certainly no stranger to HPC. He joined PNNL in 2010 as a senior HPC research scientist rising to team lead for modeling and simulation in 2014. Before joining PNNL, Barker spent nearly six years at Los Alamos National Laboratory as an HPC research scientist.

HPCwire: Your prior CENATE experience will no doubt be helpful. Perhaps you could describe your role and provide a sense of what CENATE has accomplished to date.

Barker: Really, I’ve been with CENATE since it began. It had a couple of focus areas in terms of how it was organized internally. I was in charge of one of those areas around performance predictions. The idea was that CENATE would be a program that encompassed not only of testbed and performance measurements but also would take those performance measurements we could get from physical systems, or prototype systems at small scale, and use performance prediction techniques to explore what those performance impacts would be at large scale. That was my role. Now, I am the PI.

In the first two years of the project, CENATE has deployed testbeds incorporating emerging technologies in the areas of processing, memory, and networking, and has engaged with the research community to assess the applicability of these technologies to workloads of interest to the Department of Energy. Specifically, CENATE has explored high-throughput architectures applied to large-scale Machine Learning frameworks; non-volatile memories; reconfigurable optical networking technology; and self-routing, dynamic, congestion-free networks applied to graph analytics. Through a broad community engagement, CENATE has ensured that its findings are fed back through workshops and deep collaborations with leading researchers.

HPCwire: That’s an extensive list. What’s going to change?

Barker: This change in leadership isn’t a dramatic change in terms of the technical capabilities or what we hope to accomplish technically. Now we want to ensure CENATE is more tightly integrated with the outside community, the HPC community in the DoE, and the vendor space. We also want to make sure the work we are doing at CENATE has an impact back at the DoE.

We’re working on getting a good plan in place to accomplish that – engaging with the vendor community, engaging with application developers, systems software developers, with the DoE complex making CENATE resources available to those people so that we can have a collaborative research environment. They can bring their problems to CENATE and we could provide access to some of these novel and emerging technologies that CENATE is tasked with assessing.

HPCwire: Maybe we should step back and review CENATE’s mission. How do you see it evolving, particularly in light of establishing a more inclusive and activist steering committee?

Barker: Again, it hasn’t really changed. When the steering committee stands up we envision CENATE taking on two kinds of tracks in terms of the research and the resources that we look at in each track. In the first track, we envision a shorter time scale where we are looking at technologies that are very near to market that we can get close to either prototype hardware, early release hardware, or engineering sample hardware. For the second track, in terms of timescale, we want CENATE to have an impact on more novel or high risk architectural approaches. So we might look at such things as beyond Moore’s Law computing technologies.

We envision the steering committee having a big impact because we want to have some indication from the community regarding what are the technologies that we should be most interested in from a community perspective. [Tentatively] we envision a fixed six-month schedule steering committee meetings in particular to discuss what architectures should be look at in the next six months window and feedback from the previous six month windows. We haven’t decided yet whether those will take the form of a meeting or workshop where we have more community involvement from outside the just the steering committee. Those are some of the thing still under discussion.

HPCwire: Given the importance of the steering committee, how big will it be and who will be on it?

Barker: It could be 15 or so organizations, maybe a person from each organization. We would like to have participation from other labs in the DoE community, and potentially academic partners. For example Indiana University is a major user of the Data Vortex architecture so it makes sense for them to participate. The third group being the commercial vendor space. We want to have this settled (and up on the web) before supercomputing (SC17, November 12-17).

HPCwire: There are so many new technologies bubbling up at various stages of development. Adolfy had mentioned interest in developing neuromorphic chips. Is that work ongoing? What’s the thinking on longer term technologies?

Barker: We are definitely interested in these longer term technologies and think that CENATE can have a big impact in the community, presenting that to the funding sources and say hey we want to have CENATE really to be positioned to have an impact beyond the next thing that you can buy from your hardware vendor. To explore the next gen technologies that aren’t necessarily tied to commercial products at this point but may still have real impact, particularly in the generation of beyond exascale.

For example, the exascale systems are pretty well covered with the Exascale Computing Project. We’re very familiar now with what those systems are going to look like. People are very focused to get their applications to run on those architectures. That’s not really where we see CENATE having a play. In looking beyond that, what are the technologies that are going to shape high performance computing beyond exascale timeframe? We really want CENATE to be positioned to have an impact in those areas. This is what I mean by saying a refinement of the CENATE direction. Up until now CENATE has looked at a number of near-to-market or new to market technologies. And they have had a big impact. The DGX-1 is great example. We stood up a DGX-1 and immediately we had users from around the lab complex and academia clamoring to get on the machine to explore how their applications are going to perform to develop system software and things such as that.

But we want CENATE also to look beyond that, things like extreme heterogeneity, software reconfigurable computing. So this is really why we are placing and emphasis on the connection to the research community so that we can get as much as is possible an accurate prediction of why these are the technologies that we think are going to make an impact. How can CENATE position itself to help assess those technologies in the near-term and that might involve a much deeper dive into specific technologies? CENATE doesn’t have an unlimited amount of resources (time personnel dollars) so it’s very important we target those things as effectively as we can.

HPCwire: Funding is always an issue on advanced research and DoE is a big player. What about tapping into programs such as DARPA’s Electronics Resurgence Initiative (ERI) which is focused on post-Moore’s law technology and just received additional funding?

Barker: There are definitely some programs that worth [looking at]. We are not working with ERI in particular although that could be something we explore together with program management from DoE headquarters. But there are some opportunities exactly along those lines that we are looking into but nothing firm at this point.

HPCwire: Given the various changes, and the enhanced role of the steering committee, is it premature to identify the top five technologies we are going to tackle in the next year?

Barker: Exactly. Unfortunately the end of the year is kind of a busy time in the HPC world with SC (supercomputing conference) and everything else going on. We hope those kinds of things pinned down with at least some degree of certainty within the next few months.

HPCwire: One of the distinguishing aspects of CENATE is the diversity and sophistication of the test and measurement equipment and capabilities at PNNL. What’s happening on that front?

Barker: We have equipment for testing power and energy and well as for thermal measurement capability. That is still all in place. We’re expanding the evaluation test suite that we have been using up until this point, the benchmark codes. CENATE itself has an evaluation test suite in addition to reaching out to collaborators who are interested in the equipment and who bring their own software test suite. We’re interested in looking at these machines in the context of numerical simulation, high performance computing codes, as well as graph analytics codes, machine learning codes, so we are expanding that set of benchmark codes, but the measurement capabilities we have in place are still in place.

HPCwire: It sounds like, among other things, you are adapting your capabilities to be able to handle emerging, nontraditional ‘HPC’ needs such as deep learning and data analytics?

Barker: Right. One of the important things when we are looking at these architectures, and the DGX-1 is good example, is we want to evaluate those technologies in the mode they are designed to operate in. The DGX-1 really is designed as a deep learning/ machine learning architecture. Exploring simply traditional HPC simulation codes on it might not be the most appropriate thing to do. We want to paint it [DGX-1 performance and potential] in the light it was designed for. Our evaluation suite of kernels and benchmarks needs to encompass those application areas that these architectures are targeting. And things like machine learning and deep learning are becoming such a part of the DoE workload that for CENATE to remain relevant to the DoE we need to have that capability. The DoE HPC landscape is much more than tightly couple code.

HPCwire: In the past there had been talk of CENATE workshops and other outreach efforts to diffuse CENATE learnings into the community but I don’t think much has happened along those lines yet. How do you share results and what are the plans going forward?

Barker: This is one area where we have decided that some refinement is necessary. Currently the mechanism that we use to present some of these results back to the community is through publications. It’s a pretty typical route. We’ve had some success there and, for example, we have papers on our work with DGX-1 in the submission process right now. We want to expand how we do this and are still developing the plans.

Hosting user group meetings is another way. Just two weeks ago, we hosted the first Data Vortex user group meeting at PNNL and CENATE was a player in that it brought together a couple of other programs that were looking at the data vortex architecture. That was a really successful workshop. Researchers from DoE, other government agencies, academic researchers came here to PNNL specifically about the data vortex architecture which is a big architecture in CENATE. We actually have two Data Vortex machines. That’s an example we can point to where we can say CENATE is making an impact in the community.

The NDA issues are sometimes very tricky but we have some experience with other projects where similar issues have arisen so we do have some strategies to deal with NDA issues.

HPCwire: How will you reach potential collaborators. There’s the technical steering committee but given its relatively small size, who will you reach beyond its immediate interests and attract other collaborators?

Barker: We are standing up a new CENATE web site that we hope to have up very soon, which will solicit this kind of input and have a mechanism where we can say if you’re a commercial or vendor partner and you want to participate in the CENATE program, here’s how you can get in touch with us. We definitely don’t want to be an exclusive club. We want to cast a wide net in terms of the types of technologies that are represented in the steering committee. Some of this is still in progress

One of the things we are exploring [for the web site] is a way to have potential interested external parties propose what they would like to do and the equipment they would be interested in evaluating. Again, this where the technical steering committee again comes to evaluate these proposals. It might be a model where – and this is what we are moving towards – where we essentially put out a call [for proposal]. That sounds a bit formal. CENATE is not a funding organization and won’t fund external collaborators. But it will be a way for submitters to say what interesting problems are they interested in solving that CENATE could then participate in and possibly provide access to technology. So if you are professor with some graduate students you might say, ‘Here’s an application that we want to develop and we want to explore how it might work on architecture x but we don’t have the means to get architecture x, can CENATE help?’

HPCwire: Thank you for your time.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This