PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

By John Russell

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near-term and long-term technologies that could impact DoE workloads and HPC broadly. This month the leadership baton was passed from founding director Adolfy Hoisie to Kevin Barker, a veteran PNNL researcher and member of the CENATE project since its start. Hoisie has moved to Brookhaven National Lab to lead another new initiative as chair of the just-formed Computing for National Security Department.

In its short lifespan, CENATE has made steady strides. It has assembled an impressive infrastructure of test and measurement capabilities to explore computer technology. It has tackled several specific projects, ranging from the study of novel architecture from Data Vortex and Nvidia’s DGX-1 to longer horizon efforts around neuromorphic technology. The change in leadership, emphasizes Barker, won’t alter CENATE’s ambitious plans, but it will enable refinement of several processes, notably an effort to forge tighter links to the HPC community writ large, including DoE researchers, academia, and commercial technology partners.

Today there are about a dozen CENATE staff at PNNL, says Barker. One of the biggest changes will be standing up a more inclusive, more activist steering committee to guide CENATE.

Kevin Barker, P.I., Center for Advanced Technology Evaluation (CENATE), PNNL

Recently, HPCwire talked with Barker about the developing plans for CENATE and its priorities. Barker is certainly no stranger to HPC. He joined PNNL in 2010 as a senior HPC research scientist rising to team lead for modeling and simulation in 2014. Before joining PNNL, Barker spent nearly six years at Los Alamos National Laboratory as an HPC research scientist.

HPCwire: Your prior CENATE experience will no doubt be helpful. Perhaps you could describe your role and provide a sense of what CENATE has accomplished to date.

Barker: Really, I’ve been with CENATE since it began. It had a couple of focus areas in terms of how it was organized internally. I was in charge of one of those areas around performance predictions. The idea was that CENATE would be a program that encompassed not only of testbed and performance measurements but also would take those performance measurements we could get from physical systems, or prototype systems at small scale, and use performance prediction techniques to explore what those performance impacts would be at large scale. That was my role. Now, I am the PI.

In the first two years of the project, CENATE has deployed testbeds incorporating emerging technologies in the areas of processing, memory, and networking, and has engaged with the research community to assess the applicability of these technologies to workloads of interest to the Department of Energy. Specifically, CENATE has explored high-throughput architectures applied to large-scale Machine Learning frameworks; non-volatile memories; reconfigurable optical networking technology; and self-routing, dynamic, congestion-free networks applied to graph analytics. Through a broad community engagement, CENATE has ensured that its findings are fed back through workshops and deep collaborations with leading researchers.

HPCwire: That’s an extensive list. What’s going to change?

Barker: This change in leadership isn’t a dramatic change in terms of the technical capabilities or what we hope to accomplish technically. Now we want to ensure CENATE is more tightly integrated with the outside community, the HPC community in the DoE, and the vendor space. We also want to make sure the work we are doing at CENATE has an impact back at the DoE.

We’re working on getting a good plan in place to accomplish that – engaging with the vendor community, engaging with application developers, systems software developers, with the DoE complex making CENATE resources available to those people so that we can have a collaborative research environment. They can bring their problems to CENATE and we could provide access to some of these novel and emerging technologies that CENATE is tasked with assessing.

HPCwire: Maybe we should step back and review CENATE’s mission. How do you see it evolving, particularly in light of establishing a more inclusive and activist steering committee?

Barker: Again, it hasn’t really changed. When the steering committee stands up we envision CENATE taking on two kinds of tracks in terms of the research and the resources that we look at in each track. In the first track, we envision a shorter time scale where we are looking at technologies that are very near to market that we can get close to either prototype hardware, early release hardware, or engineering sample hardware. For the second track, in terms of timescale, we want CENATE to have an impact on more novel or high risk architectural approaches. So we might look at such things as beyond Moore’s Law computing technologies.

We envision the steering committee having a big impact because we want to have some indication from the community regarding what are the technologies that we should be most interested in from a community perspective. [Tentatively] we envision a fixed six-month schedule steering committee meetings in particular to discuss what architectures should be look at in the next six months window and feedback from the previous six month windows. We haven’t decided yet whether those will take the form of a meeting or workshop where we have more community involvement from outside the just the steering committee. Those are some of the thing still under discussion.

HPCwire: Given the importance of the steering committee, how big will it be and who will be on it?

Barker: It could be 15 or so organizations, maybe a person from each organization. We would like to have participation from other labs in the DoE community, and potentially academic partners. For example Indiana University is a major user of the Data Vortex architecture so it makes sense for them to participate. The third group being the commercial vendor space. We want to have this settled (and up on the web) before supercomputing (SC17, November 12-17).

HPCwire: There are so many new technologies bubbling up at various stages of development. Adolfy had mentioned interest in developing neuromorphic chips. Is that work ongoing? What’s the thinking on longer term technologies?

Barker: We are definitely interested in these longer term technologies and think that CENATE can have a big impact in the community, presenting that to the funding sources and say hey we want to have CENATE really to be positioned to have an impact beyond the next thing that you can buy from your hardware vendor. To explore the next gen technologies that aren’t necessarily tied to commercial products at this point but may still have real impact, particularly in the generation of beyond exascale.

For example, the exascale systems are pretty well covered with the Exascale Computing Project. We’re very familiar now with what those systems are going to look like. People are very focused to get their applications to run on those architectures. That’s not really where we see CENATE having a play. In looking beyond that, what are the technologies that are going to shape high performance computing beyond exascale timeframe? We really want CENATE to be positioned to have an impact in those areas. This is what I mean by saying a refinement of the CENATE direction. Up until now CENATE has looked at a number of near-to-market or new to market technologies. And they have had a big impact. The DGX-1 is great example. We stood up a DGX-1 and immediately we had users from around the lab complex and academia clamoring to get on the machine to explore how their applications are going to perform to develop system software and things such as that.

But we want CENATE also to look beyond that, things like extreme heterogeneity, software reconfigurable computing. So this is really why we are placing and emphasis on the connection to the research community so that we can get as much as is possible an accurate prediction of why these are the technologies that we think are going to make an impact. How can CENATE position itself to help assess those technologies in the near-term and that might involve a much deeper dive into specific technologies? CENATE doesn’t have an unlimited amount of resources (time personnel dollars) so it’s very important we target those things as effectively as we can.

HPCwire: Funding is always an issue on advanced research and DoE is a big player. What about tapping into programs such as DARPA’s Electronics Resurgence Initiative (ERI) which is focused on post-Moore’s law technology and just received additional funding?

Barker: There are definitely some programs that worth [looking at]. We are not working with ERI in particular although that could be something we explore together with program management from DoE headquarters. But there are some opportunities exactly along those lines that we are looking into but nothing firm at this point.

HPCwire: Given the various changes, and the enhanced role of the steering committee, is it premature to identify the top five technologies we are going to tackle in the next year?

Barker: Exactly. Unfortunately the end of the year is kind of a busy time in the HPC world with SC (supercomputing conference) and everything else going on. We hope those kinds of things pinned down with at least some degree of certainty within the next few months.

HPCwire: One of the distinguishing aspects of CENATE is the diversity and sophistication of the test and measurement equipment and capabilities at PNNL. What’s happening on that front?

Barker: We have equipment for testing power and energy and well as for thermal measurement capability. That is still all in place. We’re expanding the evaluation test suite that we have been using up until this point, the benchmark codes. CENATE itself has an evaluation test suite in addition to reaching out to collaborators who are interested in the equipment and who bring their own software test suite. We’re interested in looking at these machines in the context of numerical simulation, high performance computing codes, as well as graph analytics codes, machine learning codes, so we are expanding that set of benchmark codes, but the measurement capabilities we have in place are still in place.

HPCwire: It sounds like, among other things, you are adapting your capabilities to be able to handle emerging, nontraditional ‘HPC’ needs such as deep learning and data analytics?

Barker: Right. One of the important things when we are looking at these architectures, and the DGX-1 is good example, is we want to evaluate those technologies in the mode they are designed to operate in. The DGX-1 really is designed as a deep learning/ machine learning architecture. Exploring simply traditional HPC simulation codes on it might not be the most appropriate thing to do. We want to paint it [DGX-1 performance and potential] in the light it was designed for. Our evaluation suite of kernels and benchmarks needs to encompass those application areas that these architectures are targeting. And things like machine learning and deep learning are becoming such a part of the DoE workload that for CENATE to remain relevant to the DoE we need to have that capability. The DoE HPC landscape is much more than tightly couple code.

HPCwire: In the past there had been talk of CENATE workshops and other outreach efforts to diffuse CENATE learnings into the community but I don’t think much has happened along those lines yet. How do you share results and what are the plans going forward?

Barker: This is one area where we have decided that some refinement is necessary. Currently the mechanism that we use to present some of these results back to the community is through publications. It’s a pretty typical route. We’ve had some success there and, for example, we have papers on our work with DGX-1 in the submission process right now. We want to expand how we do this and are still developing the plans.

Hosting user group meetings is another way. Just two weeks ago, we hosted the first Data Vortex user group meeting at PNNL and CENATE was a player in that it brought together a couple of other programs that were looking at the data vortex architecture. That was a really successful workshop. Researchers from DoE, other government agencies, academic researchers came here to PNNL specifically about the data vortex architecture which is a big architecture in CENATE. We actually have two Data Vortex machines. That’s an example we can point to where we can say CENATE is making an impact in the community.

The NDA issues are sometimes very tricky but we have some experience with other projects where similar issues have arisen so we do have some strategies to deal with NDA issues.

HPCwire: How will you reach potential collaborators. There’s the technical steering committee but given its relatively small size, who will you reach beyond its immediate interests and attract other collaborators?

Barker: We are standing up a new CENATE web site that we hope to have up very soon, which will solicit this kind of input and have a mechanism where we can say if you’re a commercial or vendor partner and you want to participate in the CENATE program, here’s how you can get in touch with us. We definitely don’t want to be an exclusive club. We want to cast a wide net in terms of the types of technologies that are represented in the steering committee. Some of this is still in progress

One of the things we are exploring [for the web site] is a way to have potential interested external parties propose what they would like to do and the equipment they would be interested in evaluating. Again, this where the technical steering committee again comes to evaluate these proposals. It might be a model where – and this is what we are moving towards – where we essentially put out a call [for proposal]. That sounds a bit formal. CENATE is not a funding organization and won’t fund external collaborators. But it will be a way for submitters to say what interesting problems are they interested in solving that CENATE could then participate in and possibly provide access to technology. So if you are professor with some graduate students you might say, ‘Here’s an application that we want to develop and we want to explore how it might work on architecture x but we don’t have the means to get architecture x, can CENATE help?’

HPCwire: Thank you for your time.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This