Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, decimating its pumping function, thus diminishing the circulation of blood through the body. Some kind of cardiac arrhythmia, if not treated with a defibrillator, will cause death within minutes.

Before a new drug reaches the market, pharmaceutical companies need to check for the risk of inducing arrhythmias. Currently, this process takes years and involves costly animal and human studies. In this project, the Living Matter Laboratory of Stanford University developed a new software tool enabling drug developers to quickly assess the viability of a new compound. This means better and safer drugs reaching the market to improve patients’ lives.

This research project has been performed by researchers from the Living Matter Laboratory at Stanford University, and supported by Living Heart Project members from SIMULIA, Hewlett Packard Enterprise, Advania, and UberCloud. It is based on the development of a Living Heart Model (LHM) that encompasses advanced electro-physiological modeling. The end goal is to create a biventricular finite element model to be used to study drug-induced arrhythmias of a human heart.

The Living Heart Project is uniting leading cardiovascular researchers, educators, medical device developers, regulatory agencies, and practicing cardiologists around the world on a shared mission to develop and validate highly accurate personalized digital human heart models. These models will establish a unified foundation for cardiovascular in silico medicine and serve as a common technology base for education and training, medical device design, testing, clinical diagnosis and regulatory science —creating an effective path for rapidly translating current and future cutting-edge innovations directly into improved patient care.

The Stanford team in conjunction with SIMULIA have developed a multi-scale 3-dimensional model of the heart that can predict the risk of this lethal arrhythmias caused by drugs. The team added capabilities to the Living Heart Model to include highly detailed cellular models, to differentiate cell types within the tissue and to compute electro-cardiograms (ECGs). This model is now able to bridge the gap between the effect of drugs at the cellular level to the chaotic electrical propagation that a patient would experience at the organ level.

A computational model that is able to assess the response of new drug compounds rapidly and inexpensively is of great interest for pharmaceutical companies, doctors, and patients. Such a tool will increase the number of successful drugs that reach the market, while decreasing cost and time to develop them, and thus help hundreds of thousands of patients in the future. However, the creation of a suitable model requires taking a multiscale approach that is computationally expensive: the electrical activity of cells is modelled in high detail and resolved simultaneously in the entire heart. Due to the fast dynamics that occur in this problem, the spatial and temporal resolutions are highly demanding.

Figure 1: Tetrahedral mesh (left) and cube mesh (right)

During the preparation and Proof of Concept phase (UberCloud Experiment 196), we set out to build and calibrate the healthy baseline case, which we then used to perturb with different drugs. After creating the UberCloud software container for SIMULIA’s Abaqus 2017 and deploying it on the HPE server in the Advania cloud, we started refining the computational mesh which consisted of roughly 5 million tetrahedral elements and 1 million nodes. Due to the intricate geometry of the heart, the mesh quality limited the time step, which in this case was 0.0012 ms for a total simulation time of 5000 ms. After realizing that it would be very difficult to calibrate our model with such a big runtime, we decided to work on our mesh, which was the current bottleneck to speed up our model. We created a mesh that was made out of cube elements (Figure 1). With this approach, we lost the smoothness of the outer surface, but reduced the number of elements by a factor of ten and increased the time step by a factor of four, for the same element size (0.7 mm). With a much faster model, we were able to calibrate the healthy, baseline case, which was assessed by electro-cardiogram (ECG) tracing (Figure 2) that recapitulates the essential features.

Figure 2: ECG tracing for the healthy, baseline case

During the final production phase, we have adapted all features of the model to a finer mesh with now 7.5 million nodes and 250,000,000 internal variables that are updated and stored within each step of the simulation. We have run 42 simulations to study whether a drug causes arrhythmias or not. With all the changes above we were able to speed up one simulation by a factor of 27 which then (still) took 40 hours using 160 CPU cores on Advania’s HPE system equipped with latest Intel Broadwell E5-2683v4 nodes and Intel OmniPath interconnect. In these simulations, we applied the drugs by blocking different ionic currents in our cellular model, replicating what is observed in cellular experiments. For each case, we let the heart beat naturally and see if the arrhythmia is developed.

Figure 3: Evolution of the electrical activity for the baseline case (no drug) and after the application of Quinidine. The electrical propagation turns chaotic after the drug is applied, showing the high risk of Quinidine to produce arrhythmias.

Figure 3 shows the application of the drug Quinidine, which is an anti-arrhythmic agent, but it has a high risk of producing Torsades de Points, which is a particular type of arrhythmia. It shows the electrical transmembrane potentials of a healthy versus a pathological heart that has been widely used in studies of normal and pathological heart rhythms and defibrillation. The propagation of the electrical potential turns chaotic (Figure 3, bottom) when compared to the baseline case (Figure 3, top), showing that our model is able to correctly and reliably predict the anti-arrhythmic risk of commonly used drugs. We envision that our model will help researchers, regulatory agencies, and pharmaceutical companies rationalize safe drug development and reduce the time-to-market of new drugs.

Acknowledgement: The authors are deeply grateful for the support from Hewlett Packard Enterprise (the Sponsor), Dassault Systemes SIMULIA (for Abaqus 2017), Advania (providing HPC Cloud resources), and the UberCloud tech team for containerizing Abaqus and integrating all software and hardware components into one seamless solution stack.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TIOBE Index: Python Reaches Another All-Time High

June 17, 2019

TIOBE has released its June 2019 Index, and Python has reached another all-time high. TIOBE, which stands for “the importance of being earnest,” was founded in 2000. Its Programming Community Index – which is u Read more…

By Oliver Peckham

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

5 Benefits Artificial Intelligence Brings to HPC

According to findings from Hyperion Research, simulation is primarily responsible for expanding the global HPC market from $2 billion in 1990 to a projected $38 billion in 2022. Read more…

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition of HPC leader Jack Wells, director of science, Oak Ridge Le Read more…

By John Russell

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This