Exascale Computing to Help Accelerate Drive for Clean Fusion Energy

By Jon Bashor, Lawrence Berkeley National Laboratory Computing Sciences

October 2, 2017

Editor’s note: One of the U.S. Exascale Computing Project’s mandates is to explain how exascale computing power will enhance scientific discovery and society broadly. This article from ECP not only examines the need for exascale computing power to advance research on fusion reactor design but it also highlights the potential for collaboration with industry partners who will require this kind of power.

For decades, scientists have struggled to create a clean, unlimited energy source here on Earth by recreating the conditions that drive our sun. Called a fusion reactor, the mechanism would use powerful magnetic fields to confine and compress gases four times as hot as our sun. By using the magnetic fields to squeeze the gases, the atoms would fuse and release more energy than was used to power the reactor. But to date, that has only worked in theory.

Achieving fusion energy production would benefit society by providing a power source that is non-polluting, renewable and using fuels such as the hydrogen isotopes found in seawater and boron isotopes found in minerals.

Early fusion research projects in the 1950s and ‘60s relied on building expensive magnetic devices, testing them and then building new ones and repeating the cycle. In the mid-1970s, fusion scientists began using powerful computers to simulate how the hot gases, called plasmas, would be heated, squeezed and fused to produce energy. It’s an extremely complex and difficult problem, one that some fusion researchers have likened to holding gelatin together with rubber bands.

Using supercomputers to model and simulate plasma behavior, scientists have made great strides toward building a working reactor. The next generation of supercomputers on the horizon, known as exascale systems, will bring the promise of fusion energy closer.

The best-known fusion reactor design is called a tokamak, in which a donut-shaped chamber is used to contain the hot gases, inside. Because the reactors are so expensive, only small-scale ones have been built. ITER, an international effort to build the largest-ever tokamak-in the south of France. The project, conceived in 1985, is now scheduled to have its first plasma experiments in 2025 and begin fusion experiments in 2035. The estimated cost is 14 billion euros, with the European Union and six other nations footing the bill.

Historically, fusion research around the world has been funded by governments due to the high cost and long-range nature of the work.

But in the Orange County foothills of Southern California, a private company is also pursuing fusion energy, but taking a far different path than that of ITER and other tokamaks. Tri Alpha Energy’s cylindrical reactor design is completely different in its design philosophy, geometry, fuels and method of heating the plasma, all built with a different funding model. Chief Science Officer Toshiki Tajima says their approach makes them mavericks in the fusion community.

But the one thing both ITER and similar projects and Tri Alpha Energy have consistently relied on is using high-performance computers to simulate conditions inside the reactor as they seek to overcome the challenges inherent in designing, building and operating a machine that will replicate the processes of the sun here on Earth.

As each generation of supercomputers has come online, fusion scientists have been able to study plasma conditions in greater detail, helping them understand how the plasma will behave, how it may lose energy and disrupt the reactions, and what can be done to create and maintain fusion. With exascale supercomputers that are 50 times more powerful than today’s top systems looming on the horizon, Tri Alpha Energy sees great possibilities in accelerating the development of their reactor design. Tajima is one of 18 members of the industry advisory council for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP).

“We’re very excited by the promise of exascale computing – we are currently fund-raising for our next-generation machine, but we can build a simulated reactor using a very powerful computer, and for this we would certainly need exascale,” Tajima said. “This would help us accurately predict if our idea would work, and if it works as predicted, our investors would be encouraged to support construction of the real thing.”

The Tri Alpha Energy fusion model builds on the experience and expertise of Tajima and his longtime mentor, the late Norman Rostoker, a professor of physics at the University of California, Irvine (UCI). Tajima first met Rostoker as a graduate student, leaving Japan to study at Irvine in 1973. In addition to his work with TAE, Tajima holds the Norman Rostoker Chair in Applied Physics at UCI. In 1998, Rostoker co-founded TAE, which Tajima joined in 2011.

In it for the long run

It was also in the mid-1970s, that the U.S. Atomic Energy Commission, the forerunner of DOE, created a computing center to support magnetic fusion energy research, first with a cast-off computer from classified defense programs, but then with a series of ever-more capable supercomputers. From the outset, Tajima was an active user, and still remembers he was User No. 1100 at the Magnetic Fusion Energy Computer Center. The Control Data Corp. and Cray supercomputers were a big leap ahead of the IBM 360 he had been using.

“The behavior of plasma could not easily be predicted with computation back then and it was very hard to make any progress,” Tajima said. “I was one of the very early birds to foul up the machines. When the Cray-1 arrived, it was marvelous and I fell in love with it.”

At the time, the tokamak was seen as the hot design and most people in the field gravitated in this direction, Tajima said, and he followed. But after learning about plasma-driven accelerators under Professor Rostoker, in 1976 he went to UCLA to work with Prof. John Dawson. “He and I shared a vision of new accelerators and we began using large-scale computation in 1975, an area in which I wanted to learn more from him,” Tajima said.

As a result, the two men wrote a paper entitled “Laser Electron Accelerator,” which appeared in Physical Review Letters in 1979. The seminal paper explained how firing an intense electromagnetic pulse (or beam of particles) into a plasma can create a wake in the plasma and that electrons, and perhaps ions, trapped in this wake can be accelerated to very high energies.

TAE’s philosophy, built on Rostoker’s ideas, is to combine both accelerator and fusion plasma research. In a tokamak, the deuterium-tritium fuel needs to be heated and confined at an energy level of 10,000 eV (electron volts) for fusion to occur. The TAE reactor, however, needs to be 30 times hotter. In a tokamak, the same magnetic fields that confine the plasma also heat it to 3 billion degrees C. In the TAE machine, the energy will be injected using a particle accelerator. “A 100,000 eV beam is nothing for an accelerator,” Tajima said, pointing to the 1G eV BELLA device at DOE’s Lawrence Berkeley National Laboratory. “Using a beam-driven plasma is relatively easy but it may be counterintuitive that you can get higher energy with more stability — the more energetic the wake is, the more stable it becomes.”

But this approach is not without risk. With the tokamak, the magnetic fields protect the plasma, much like the exoskeleton of a beetle protects the insect’s innards, Tajima said. But the accelerator beam creates a kind of spine, which creates the plasma by its weak magnetic fields, a condition known as Reverse Field Configuration. One of Rostoker’s concerns was that the plasma would be too vulnerable to other forces in the early stages of its formation. However, in the 40-centimeter diameter cylindrical reactor, the beam forms a ring like a bicycle tire, and like a bicycle, the stability increases the faster the wheels spin.

“The stronger the beam is, the more stable the plasma becomes,” Tajima said. “This was the riskiest problem for us to solve, but in early 2000 we showed the plasma could survive and this reassured our investors. We call this approach of tackling the hardest problem first ‘fail fast’.”

Another advantage of TAE’s approach is that the main fuel, Boron-11, does not produce neutrons as a by-product; instead it produces three alpha particles, which is the basis of the company’s name. A tokamak, using hydrogen-isotope fuels, generates neutrons, which can penetrate and damage materials, including the superconducting magnets that confine the tokamak plasma. To prevent this, the tokamak reactor requires one-meter-thick shielding. Without the need to contain neutrons, the TAE reactor does not need heavy shielding. This also helps reduce construction costs.

Computation Critical to Future Progress

With his 40 years of experience using HPC to advance fusion energy, Tajima offers a long-term perspective, from the past decades to exascale systems in the early 2020s. As a principal investigator on the Numerical Tokamak project in the early 1990s, he has helped build much of the HPC ecosystem for fusion research.

At the early stage of modeling fusion behavior, the codes focus on the global plasma at very fast time scales. These codes, known as MHD codes (magnetohydrodynamics), are not as computationally “expensive,” meaning they do not require as many computing resources, and at TAE were run on in-house clusters.

The next step is to model the more minute part of the plasma instability, known as kinetic instability, which requires more sophisticated codes that can simulate the plasma in greater detail over longer time scales. Achieving this requires more sophisticated systems. Around 2008-09, TAE stabilized this stage of the problem using its own computing system and by working with university collaborators who have access to federally funded supercomputing centers, such as those supported by DOE. “Our computing became more demanding during this time,” Tajima said.

The third step, which TAE is now tackling, is to make a plasma that can “live” longer, which is known as the transport issue in the fusion community. “This is a very, very difficult problem and consumes large amounts of computing resources as it encompasses a different element of the plasma,” Tajima said, “and the plasma becomes much more complex.”

The problem involves three distinct functions:

  • The core of the field reverse configuration, which is where the plasma is at the highest temperature
  • The “scrape-off layer,” which is the protective outer layer of ash on the core and which Tajima likens to an onion’s skin
  • The “ash cans,” or diverters, that are at each end of the reactor. They remove the ash, or impurities, from the scrape-off layer, which can make the plasma muddy and cause it to behave improperly.

“The problem is that the three elements behave very, very differently in both the plasma physics as well as in other properties,” Tajima said. “For example, the diverters are facing the metallic walls so you have to understand the interaction of the cold plate metals and the out-rushing impurities. And those dynamics are totally different than the core which is very high temperature and very high energy and spinning around like a bicycle tire, and the scrape-off layer.”

These factors are all coupled to each other using very complex geometries and in order to see if the TAE approach is feasible, researchers need to simulate the entirety of the reactor in order to understand and eventually control the reactions.

“We will run a three-layered simulation of our fusion reactor on the computer, with the huge particle code, the transport code and the neural net on the simulation – that’s our vision and we will certainly need an exascale machine to do this,” Tajima said. “This will allow us to predict if our concept works or not in advance of building machine so that our investors’ funds are not wasted.”

The overall code will have three components. At the basic level will be a representative simulation of particles in each part of the plasma. The second layer will be the more abstract transport code, which tracks heat moving in and out of the plasma. But even on exascale systems, the transport code will not be able to run fast enough to keep up with real-time changes in the plasma. Instabilities which affect the heat transport in the plasma come and go in milliseconds.

“So, we need a third layer that will be an artificial neural net, which will be able to react in microseconds, which is a bit similar to a driverless auto, and will ‘learn’ how to control the bicycle tire-shaped plasma, Tajima said. This application will be run on top of transport code and it will observe experimental data and react appropriately to keep the simulation running.

“Doing this will certainly require exascale computing,” Tajima said. “Without it we will take up to 30 years to finish – and our investors cannot wait that long. This project has been independent of the government funding, so that our investors’ fund provided an independent, totally different path toward fusion. This could amount to a means of national security to provide an alternative solution to a problem as large as fusion energy. Society will also benefit from a clean source of energy and our exascale-driven reactor march will be a very good thing for the nation and the world.”

Advanced Accelerators are Pivotal

Both particle accelerators and fusion energy are technologies important to the nation’s scientific leadership, with research funded over many decades by the Department of Energy and its predecessor agencies.

Not only are particle accelerators a vital part of the DOE-supported infrastructure of discovery science and university research, they also have private-sector applications and a broad range of benefits to industry, security, energy, the environment and medicine.

Since Toshiki Tajima and John Dawson published their paper “Laser Electron Accelerator” in 1979, the idea of building smaller accelerators, with the length measure in meters instead of kilometers, has gained traction. In these new accelerators, particles “surf” in the plasma wake of injected particles, reaching very high energy levels in very short distances.

According to Jean-Luc Vay, a researcher at DOE’s Lawrence Berkeley National Laboratory, taking full advantage of accelerators’ societal benefits, game-changing improvements in the size and cost of accelerators are needed. Plasma-based particle accelerators stand apart in their potential for these improvements, according to Vay, and turning this from a promising technology into a mainstream scientific tool depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales.

To help achieve this goal, Vay is leading a project called Exascale Modeling of Advanced Particle Accelerators as part of DOE’s Exascale Computing Project. This project supports the practical economic design of smaller, less-expensive plasma-based accelerators.

As Tri Alpha Energy pursues its goal of using a particle accelerator (though this accelerator is not related to wakefield accelerators) to achieve fusion energy, the company is also planning to apply its experience and expertise in accelerator research for medical applications. Not only will this effort produce returns for the company’s investors, but it should also help advance TAE’s understanding of accelerators and using them to create a fusion reactor.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the Read more…

By Tiffany Trader

Microsoft’s Azure Quantum Platform Now Offers Toshiba’s ‘Simulated Bifurcation Machine’

September 22, 2020

While pure-play quantum computing (QC) gets most of the QC-related attention, there’s also been steady progress adapting quantum methods for select use on classical computers. Today, Microsoft announced that Toshiba’ Read more…

By John Russell

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availability of instances with Nvidia’s newest GPU, the A100. OCI als Read more…

By John Russell

IBM, CQC Enable Cloud-based Quantum Random Number Generation

September 21, 2020

IBM and Cambridge Quantum Computing (CQC) have partnered to achieve progress on one of the major business aspirations for quantum computing – the goal of generating verified, truly random numbers that can be used for a Read more…

By Todd R. Weiss

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s seco Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This